Log24

Thursday, March 22, 2018

The Diamond Cube

Filed under: Uncategorized — Tags: — m759 @ 11:32 AM

The Java applets at the webpage "Diamonds and Whirls"
that illustrate Cullinane cubes may be difficult to display.

Here instead is an animated GIF that shows the basic unit
for the "design cube" pages at finitegeometry.org.

Friday, December 9, 2016

Snow Dance

Filed under: Uncategorized — Tags: — m759 @ 9:00 AM

See Ballet Blanc  in this journal.

For a darker perspective, click on the image below.

IMAGE- Detail of large 'Search for the Lost Tesseract' image with Amy Adams, Richard Zanuck, 'snowflake' structure, and white gloves

See also Cartier in The Hexagon of Opposition.

Happy birthday to Kirk Douglas.

Kirk Douglas in 'Diamonds'

Tuesday, April 5, 2016

“Puzzle Cube of a Novel”

Filed under: Uncategorized — Tags: , — m759 @ 2:00 AM

"To know the mind of the creator"

Or that of Orson Welles

Related material — Cube Coloring.

Sunday, December 28, 2014

Cube of Ultron

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

The Blacklist “Pilot” Review

"There is an element of camp to this series though. Spader is
quite gleefully channeling Anthony Hopkins, complete with being
a well educated, elegant man locked away in a super-cell.
Speaking of that super-cell, it’s kind of ridiculous. They’ve got him
locked up in an abandoned post office warehouse on a little
platform with a chair inside  a giant metal cube that looks like
it could have been built by Tony Stark. And as Liz approaches
to talk to him, the entire front of the cube  opens and the whole
thing slides back to leave just the platform and chair. Really? 
FUCKING REALLY ? "

Kate Reilly at Geekenstein.com (Sept. 27, 2013)

Friday, December 28, 2012

Cube Koan

Filed under: Uncategorized — Tags: , , , — m759 @ 4:56 AM
 

From Don DeLillo's novel Point Omega —

I knew what he was, or what he was supposed to be, a defense intellectual, without the usual credentials, and when I used the term it made him tense his jaw with a proud longing for the early weeks and months, before he began to understand that he was occupying an empty seat. "There were times when no map existed to match the reality we were trying to create."

"What reality?"

"This is something we do with every eyeblink. Human perception is a saga of created reality. But we were devising entities beyond the agreed-upon limits of recognition or interpretation. Lying is necessary. The state has to lie. There is no lie in war or in preparation for war that can't be defended. We went beyond this. We tried to create new realities overnight, careful sets of words that resemble advertising slogans in memorability and repeatability. These were words that would yield pictures eventually and then become three-dimensional. The reality stands, it walks, it squats. Except when it doesn't."

He didn't smoke but his voice had a sandlike texture, maybe just raspy with age, sometimes slipping inward, becoming nearly inaudible. We sat for some time. He was slouched in the middle of the sofa, looking off toward some point in a high corner of the room. He had scotch and water in a coffee mug secured to his midsection. Finally he said, "Haiku."

I nodded thoughtfully, idiotically, a slow series of gestures meant to indicate that I understood completely.

"Haiku means nothing beyond what it is. A pond in summer, a leaf in the wind. It's human consciousness located in nature. It's the answer to everything in a set number of lines, a prescribed syllable count. I wanted a haiku war," he said. "I wanted a war in three lines. This was not a matter of force levels or logistics. What I wanted was a set of ideas linked to transient things. This is the soul of haiku. Bare everything to plain sight. See what's there. Things in war are transient. See what's there and then be prepared to watch it disappear."

What's there—

This view of a die's faces 3, 6, and 5, in counter-
clockwise order (see previous post) suggests a way
of labeling the eight corners  of a die (or cube):

123, 135, 142, 154, 246, 263, 365, 456.

Here opposite faces of the die sum to 7, and the
three faces meeting at each corner are listed
in counter-clockwise order. (This corresponds
to a labeling of one of MacMahon's* 30 colored cubes.)
A similar vertex-labeling may be used in describing 
the automorphisms of the order-8 quaternion group.

For a more literary approach to quaternions, see
Pynchon's novel Against the Day .

* From Peter J. Cameron's weblog:

  "The big name associated with this is Major MacMahon,
   an associate of Hardy, Littlewood and Ramanujan,
   of whom Robert Kanigel said,

His expertise lay in combinatorics, a sort of
glorified dice-throwing, and in it he had made
contributions original enough to be named
a Fellow of the Royal Society.

   Glorified dice-throwing, indeed…"

Sunday, August 5, 2012

Cube Partitions

Filed under: Uncategorized — Tags: — m759 @ 7:59 AM

The second Logos  figure in the previous post
summarized affine group actions on partitions
that generate a group of about 1.3 trillion
permutations of a 4x4x4 cube (shown below)—

IMAGE by Cullinane- 'Solomon's Cube' with 64 identical, but variously oriented, subcubes, and six partitions of these 64 subcubes

Click for further details.

Sunday, February 5, 2012

Cuber

Filed under: Uncategorized — Tags: — m759 @ 5:15 PM

(Continued from January 11, 2012)

Wednesday, January 11, 2012

Cuber

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

"Examples galore of this feeling must have arisen in the minds of the people who extended the Magic Cube concept to other polyhedra, other dimensions, other ways of slicing.  And once you have made or acquired a new 'cube'… you will want to know how to export a known algorithm , broken up into its fundamental operators , from a familiar cube.  What is the essence of each operator?  One senses a deep invariant lying somehow 'down underneath' it all, something that one can’t quite verbalize but that one recognizes so clearly and unmistakably in each new example, even though that example might violate some feature one had thought necessary up to that very moment.  In fact, sometimes that violation is what makes you sure you’re seeing the same thing , because it reveals slippabilities you hadn’t sensed up till that time….

… example: There is clearly only one sensible 4 × 4 × 4 Magic Cube.  It is the  answer; it simply has the right spirit ."

— Douglas R. Hofstadter, 1985, Metamagical Themas: Questing for the Essence of Mind and Pattern  (Kindle edition, locations 11557-11572)

See also Many Dimensions in this journal and Solomon's Cube.

Friday, December 30, 2011

Quaternions on a Cube

Filed under: Uncategorized — Tags: , , — m759 @ 5:48 AM

The following picture provides a new visual approach to
the order-8 quaternion  group's automorphisms.

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Here the cube is called "eightfold" because the eight vertices,
like the eight subcubes of a 2×2×2 cube,* are thought of as
independently movable. See The Eightfold Cube.

See also…

Related material: Robin Chapman and Karen E. Smith
on the quaternion group's automorphisms.

* See Margaret Wertheim's Christmas Eve remarks on mathematics
and the following eightfold cube from an institute she co-founded—

Froebel's third gift, the eightfold cube
© 2005 The Institute for Figuring

Photo by Norman Brosterman
fom the Inventing Kindergarten
exhibit at The Institute for Figuring
(co-founded by Margaret Wertheim)

Saturday, August 27, 2011

Cosmic Cube*

Filed under: Uncategorized — Tags: , — m759 @ 12:25 PM

IMAGE- Anthony Hopkins exorcises a Rubik cube

Prequel (Click to enlarge)

IMAGE- Galois vs. Rubik: Posters for Abel Prize, Oslo, 2008

Background —

IMAGE- 'Group Theory' Wikipedia article with Rubik's cube as main illustration and argument  by a cuber for the image's use

See also Rubik in this journal.

* For the title, see Groups Acting.

Saturday, March 24, 2018

Slight?

Filed under: Uncategorized — Tags: — m759 @ 12:30 PM

Sure, Whatever.

Filed under: Uncategorized — Tags: — m759 @ 11:13 AM

The search for Langlands in the previous post
yields the following Toronto Star  illustration —

From a review of the recent film "Justice League" —

"Now all they need is to resurrect Superman (Henry Cavill),
stop Steppenwolf from reuniting his three Mother Cubes
(sure, whatever) and wrap things up in under two cinematic
hours (God bless)."

For other cubic adventures, see yesterday's post on A Piece of Justice 
and the block patterns in posts tagged Design Cube.

Friday, March 23, 2018

Reciprocity

Filed under: Uncategorized — Tags: — m759 @ 7:00 PM

Copy editing — From Wikipedia

"Copy editing (also copy-editing or copyediting, sometimes abbreviated ce)
is the process of reviewing and correcting written material to improve accuracy,
readability, and fitness for its purpose, and to ensure that it is free of error,
omission, inconsistency, and repetition. . . ."

An example of the need for copy editing:

Related material:  Langlands and Reciprocity in this  journal.

Piece Prize

Filed under: Uncategorized — Tags: — m759 @ 6:15 PM

The Waymark Prize from 'A Piece of Justice' (1995) by Jill Paton Walsh

The Waymark Prize Mystery - 'A Piece of Justice' (1995) p. 138

From the Personal to the Platonic

Filed under: Uncategorized — Tags: — m759 @ 11:01 AM

On the Oslo artist Josefine Lyche —

"Josefine has taken me through beautiful stories,
ranging from the personal to the platonic
explaining the extensive use of geometry in her art.
I now know that she bursts into laughter when reading
Dostoyevsky, and that she has a weird connection
with a retired mathematician."

Ann Cathrin Andersen
    http://bryggmagasin.no/2017/behind-the-glitter/

Personal —

The Rushkoff Logo

— From a 2016 graphic novel by Douglas Rushkoff.

See also Rushkoff and Talisman in this journal.

Platonic —

The Diamond Cube.

Compare and contrast the shifting hexagon logo in the Rushkoff novel above 
with the hexagon-inside-a-cube in my "Diamonds and Whirls" note (1984).

Thursday, March 22, 2018

In Memoriam

Filed under: Uncategorized — Tags: — m759 @ 10:10 PM

Also on March 18, 2015 . . .

Wednesday, March 7, 2018

Unite the Seven.

Filed under: Uncategorized — Tags: , — m759 @ 10:31 AM


Related material —

The seven points of the Fano plane within 

The Eightfold Cube.
 

Weyl on symmetry, the eightfold cube, the Fano plane, and trigrams of the I Ching


"Before time began . . . ."

  — Optimus Prime

Monday, January 22, 2018

Hollywood Moment

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

Matt B. Roscoe and Joe Zephyrs, both of Missoula, Montana, authors of article on quilt block symmetries

A death on the date of the above symmetry chat,
Wednesday, August 17, 2016

'Love Story' director dies

An Hispanic Hollywood moment:

Ojo de Dios —

Click for related material.

For further Hispanic entertainment,
see Ben Affleck sing 
"Aquellos Ojos Verdes "
in "Hollywoodland."

Wednesday, September 13, 2017

Summer of 1984

Filed under: Uncategorized — Tags: — m759 @ 9:11 AM

The previous two posts dealt, rather indirectly, with
the notion of "cube bricks" (Cullinane, 1984) —

Group actions on partitions —

Cube Bricks 1984 —

An Approach to Symmetric Generation of the Simple Group of Order 168

Another mathematical remark from 1984 —

For further details, see Triangles Are Square.

Tuesday, September 12, 2017

Think Different

Filed under: Uncategorized — Tags: — m759 @ 11:00 PM

The New York Times  online this evening

"Mr. Jobs, who died in 2011, loomed over Tuesday’s
nostalgic presentation. The Apple C.E.O., Tim Cook,
paid tribute, his voice cracking with emotion, Mr. Jobs’s
steeple-fingered image looming as big onstage as
Big Brother’s face in the classic Macintosh '1984' commercial."

James Poniewozik 

Review —

Thursday, September 1, 2011

How It Works

Filed under: Uncategorized — Tags:  — m759 @ 11:00 AM 

"Design is how it works." — Steven Jobs (See Symmetry and Design.)

"By far the most important structure in design theory is the Steiner system S(5, 8, 24)."
 — "Block Designs," by Andries E. Brouwer

. . . .

See also 1984 Bricks in this journal.

Chin Music

Filed under: Uncategorized — Tags: — m759 @ 9:45 PM

Related image suggested by "A Line for Frank" (Sept. 30, 2013) —

Sunday, July 2, 2017

Practically Cubist

Filed under: Uncategorized — m759 @ 3:45 AM

From an Anthony Lane movie review in the April 8, 2013,
issue of The New Yorker

"When the Lord God forbade his worshippers to bow down
before any graven image, [Rosario] Dawson’s face was
exactly the kind of thing He had in mind. No other star can
boast such sculptured features—except Vincent Cassel,
who is pretty damn graven himself. When the two of them
make love, in 'Trance,' one strong bone structure pressed
against another, it’s like a clash of major religions. What if
they had a family? The kids would be practically Cubist."

As for the other film Lane reviewed in that issue, "Blancanieves" —

See Snow White + Cube in this  journal.

See as well a related cartoon graveyard, also from April 8, 2013.

Wednesday, April 12, 2017

Contracting the Spielraum

Filed under: Uncategorized — Tags: , , — m759 @ 10:00 AM

The contraction of the title is from group actions on
the ninefold square  (with the center subsquare fixed)
to group actions on the eightfold cube.

From a post of June 4, 2014

At math.stackexchange.com on March 1-12, 2013:

Is there a geometric realization of the Quaternion group?” —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note “GL(2,3) actions on a cube” of April 5, 1985).

Friday, December 9, 2016

Still Point or Hole in the Data?

Filed under: Uncategorized — Tags: — m759 @ 12:21 PM

Sacred Space (continued)

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

See Plan 9 in this journal.

 The 3x3 square 

Optimism

Filed under: Uncategorized — Tags: — m759 @ 11:29 AM

As opposed to —

A Nov. 9 panel from the Mahindra Humanities Center at Harvard

Thursday, December 8, 2016

Space News

Filed under: Uncategorized — Tags: — m759 @ 4:56 PM

"Bad news on the doorstep…." — American Pie


Update of 5:24 PM ET — A requiem chord

Tom Stoppard, Jumpers —

“Heaven, how can I believe in Heaven?” 
she sings at the finale.

“Just a lying rhyme for seven!”

Perhaps.

Sunday, October 23, 2016

Voids

Filed under: Uncategorized — m759 @ 8:24 PM

From mathematician Izabella Laba today —

From Harry T. Antrim’s 1967 thesis on Eliot —

“That words can be made to reach across the void
left by the disappearance of God (and hence of all
Absolutes) and thereby reestablish some basis of
relation with forms existing outside the subjective
and ego-centered self has been one of the chief
concerns of the first half of the twentieth century.”

And then there is the Snow White void  —

A logo that may be interpreted as one-eighth of a 2x2x2 array
of cubes —

The figure in white above may be viewed as a subcube representing,
when the eight-cube array is coordinatized, the identity (i.e., (0, 0, 0)).

Wednesday, October 19, 2016

The Crosswicks Curse Continues

Filed under: Uncategorized — Tags: — m759 @ 11:29 AM

"There is  such a thing as 1906 "

Thursday, September 15, 2016

The Smallest Perfect Number/Universe

Filed under: Uncategorized — Tags: — m759 @ 6:29 AM

The smallest perfect number,* six, meets
"the smallest perfect universe,"** PG(3,2).

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

  * For the definition of "perfect number," see any introductory
    number-theory text that deals with the history of the subject.
** The phrase "smallest perfect universe" as a name for PG(3,2),
     the projective 3-space over the 2-element Galois field GF(2),
     was coined by math writer Burkard Polster. Cullinane's square
     model of PG(3,2) differs from the earlier tetrahedral model
     discussed by Polster.

Thursday, December 17, 2015

Hint of Reality

Filed under: Uncategorized — Tags: , — m759 @ 12:45 PM

From an article* in Proceedings of Bridges 2014

As artists, we are particularly interested in the symmetries of real world physical objects.

Three natural questions arise:

1. Which groups can be represented as the group of symmetries of some real-world physical object?

2. Which groups have actually  been represented as the group of symmetries of some real-world physical object?

3. Are there any glaring gaps – small, beautiful groups that should have a physical representation in a symmetric object but up until now have not?

The article was cited by Evelyn Lamb in her Scientific American  
weblog on May 19, 2014.

The above three questions from the article are relevant to a more
recent (Oct. 24, 2015) remark by Lamb:

" finite projective planes [in particular, the 7-point Fano plane,
about which Lamb is writing] 
seem like a triumph of purely 
axiomatic thinking over any hint of reality…."

For related hints of reality, see Eightfold Cube  in this journal.

* "The Quaternion Group as a Symmetry Group," by Vi Hart and Henry Segerman

Friday, August 7, 2015

Parts

Filed under: Uncategorized — Tags: — m759 @ 2:19 AM

Spielerei  —

"On the most recent visit, Arthur had given him
a brightly colored cube, with sides you could twist
in all directions, a new toy that had just come onto
the market."

— Daniel Kehlmann, F: A Novel  (2014),
     translated from the German by
     Carol Brown Janeway

Nicht Spielerei  —

A figure from this journal at 2 AM ET
on Monday, August 3, 2015

Also on August 3 —

FRANKFURT — "Johanna Quandt, the matriarch of the family
that controls the automaker BMW and one of the wealthiest
people in Germany, died on Monday in Bad Homburg, Germany.
She was 89."

MANHATTAN — "Carol Brown Janeway, a Scottish-born
publishing executive, editor and award-winning translator who
introduced American readers to dozens of international authors,
died on Monday in Manhattan. She was 71."

Related material —  Heisenberg on beauty, Munich, 1970                       

Saturday, June 13, 2015

Egg Tales

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

"And not all the king's men nor his horses
 Will resurrect his corpus."

Finnegans Wake

See as well Andy Weir's "The Egg" and Working Backward.

Plan 9 Continues…

Filed under: Uncategorized — Tags: — m759 @ 11:32 AM

A version of the song in the previous post that I prefer:

A related meditation —

IMAGE- Joseph Campbell, 'The Inner Reaches of Outer Space,' meditation on the number nine, the Goddess, and the Angelus

For a more abstract version of the
"matrix of the cosmic process,"
see "3×3 Grid" in this journal.

Friday, June 5, 2015

Narratives

Filed under: Uncategorized — m759 @ 11:09 PM

.

See also Snow White Dance.

For those who prefer mathematics to narrative:

Object of Beauty.

Thursday, May 7, 2015

Paradigm for Pedagogues

Filed under: Uncategorized — Tags: — m759 @ 7:14 PM

Illustrations from a post of Feb. 17, 2011:

Plato’s paradigm in the Meno —

http://www.log24.com/log/pix11/110217-MenoFigure16bmp.bmp

Changed paradigm in the diamond theorem (2×2 case) —

http://www.log24.com/log/pix11/110217-MenoFigureColored16bmp.bmp

Ultron: By the Book

Filed under: Uncategorized — Tags: — m759 @ 6:45 PM

If The New York Times interviewed Ultron for its
Sunday Book Review "By the Book" column —

What books are currently on your night stand?

Steve Fuller's Thomas Kuhn: A Philosophical History for Our Times

Gerald Holton's Thematic Origins of Scientific Thought

John Gray's The Soul of the Marionette

Lede

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

"Who is Ultron? What is he?"

See too the previous post and Cube of Ultron.

Wednesday, May 6, 2015

Soul

Filed under: Uncategorized — Tags: , — m759 @ 4:30 PM

Nonsense…

See Gary Zukav, Harvard '64, in this journal.

and damned  nonsense —

"Every institution has a soul."

— Gerald Holton in Harvard Gazette  today

Commentary —

"The Ferris wheel came into view again…."
Malcom Lowry, Under the Volcano

See also Holton in a Jan. 1977 interview:

"If people have souls, and I think a few have, it shows…."

Wednesday, April 1, 2015

Würfel-Märchen

Filed under: Uncategorized — Tags: , , — m759 @ 7:59 PM

Continued from yesterday, the date of death for German
billionaire philanthropist Klaus Tschira —

For Tschira in this journal, see Stiftung .

For some Würfel  illustrations, see this morning's post
Manifest O.  A related webpage —

Manifest O

Filed under: Uncategorized — Tags: , — m759 @ 4:44 AM

The title was suggested by
http://benmarcus.com/smallwork/manifesto/.

The "O" of the title stands for the octahedral  group.

See the following, from http://finitegeometry.org/sc/map.html —

83-06-21 An invariance of symmetry The diamond theorem on a 4x4x4 cube, and a sketch of the proof.
83-10-01 Portrait of O  A table of the octahedral group O using the 24 patterns from the 2×2 case of the diamond theorem.
83-10-16 Study of O  A different way of looking at the octahedral group, using cubes that illustrate the 2x2x2 case of the diamond theorem.
84-09-15 Diamonds and whirls Block designs of a different sort — graphic figures on cubes. See also the University of Exeter page on the octahedral group O.

Wednesday, September 17, 2014

Raiders of the Lost Articulation

Filed under: Uncategorized — Tags: , , — m759 @ 6:14 PM

Tom Hanks as Indiana Langdon in Raiders of the Lost Articulation :

An unarticulated (but colored) cube:

Robert Langdon (played by Tom Hanks) and a corner of Solomon's Cube

A 2x2x2 articulated cube:

IMAGE- Eightfold cube with detail of triskelion structure

A 4x4x4 articulated cube built from subcubes like
the one viewed by Tom Hanks above:

Image-- Solomon's Cube

Solomon’s Cube

Friday, August 29, 2014

Raum

Filed under: Uncategorized — Tags: — m759 @ 8:00 AM

A possible answer to the 1923 question of Walter Gropius, "Was ist Raum?"—

See also yesterday's Source of the Finite and the image search
on the Gropius question in last night's post.

Thursday, August 28, 2014

Brutalism Revisited

Filed under: Uncategorized — Tags: — m759 @ 11:59 PM

Yesterday's 11 AM post was a requiem for a brutalist architect.

Today's LA Times  has a related obituary:

"Architectural historian Alan Hess, who has written several books on
Mid-Century Modern design, said Meyer didn't have a signature style,
'which is one reason he is not as well-known as some other architects
of the period. But whatever style he was working in, he brought a real
sense of quality to his buildings.'

A notable example is another bank building, at South Beverly Drive
and Pico Boulevard, with massive concrete columns, a hallmark of
the New Brutalism style. 'This is a really good example of it,' Hess said."

— David Colker, 5:43 PM LA time, Aug. 28, 2014

A related search, suggested by this morning's post Source of the Finite:

(Click to enlarge.)

Source of the Finite

Filed under: Uncategorized — Tags: — m759 @ 10:20 AM

"Die Unendlichkeit  ist die uranfängliche Tatsache: es wäre nur
zu erklären, woher das Endliche  stamme…."

— Friedrich Nietzsche, Das Philosophenbuch/Le livre du philosophe
(Paris: Aubier-Flammarion, 1969), fragment 120, p. 118

Cited as above, and translated as "Infinity is the original fact;
what has to be explained is the source of the finite…." in
The Production of Space , by Henri Lefebvre. (Oxford: Blackwell,
1991 (1974)), p.  181.

This quotation was suggested by the Bauhaus-related phrase
"the laws of cubical space" (see yesterday's Schau der Gestalt )
and by the laws of cubical space discussed in the webpage
Cube Space, 1984-2003.

For a less rigorous approach to space at the Harvard Graduate
School of Design, see earlier references to Lefebvre in this journal.

Wednesday, August 27, 2014

Not Quite

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

Click image to enlarge.

Altar

Filed under: Uncategorized — Tags: , — m759 @ 11:00 AM

"To every man upon this earth,
Death cometh soon or late.
And how can man die better
Than facing fearful odds,
For the ashes of his fathers,
and the temples of his gods…?"

— Macaulay, quoted in the April 2013 film "Oblivion"

"Leave a space." — Tom Stoppard, "Jumpers"

Related material: The August 16, 2014, sudden death in Scotland
of an architect of the above Cardross seminary, and a Log24 post,
Plato's Logos, from the date of the above photo: June 26, 2010.

See also…

IMAGE- T. Lux Feininger on 'Gestaltung'

Here “eidolon” should instead be “eidos .”

An example of eidos — Plato's diamond (from the Meno ) —

http://www.log24.com/log/pix10A/100607-PlatoDiamond.gif

Schau der Gestalt

Filed under: Uncategorized — Tags: , — m759 @ 5:01 AM

(Continued from Aug. 19, 2014)

"Christian contemplation is the opposite
of distanced consideration of an image:
as Paul says, it is the metamorphosis of
the beholder into the image he beholds
(2 Cor 3.18), the 'realisation' of what the
image expresses (Newman). This is
possible only by giving up one's own
standards and being assimilated to the
dimensions of the image."

— Hans Urs von Balthasar,
The Glory of the Lord:
A Theological Aesthetics,

Vol. I: Seeing the Form
[ Schau der Gestalt ],
Ignatius Press, 1982, p. 485

A Bauhaus approach to Schau der Gestalt :

I prefer the I Ching 's approach to the laws of cubical space.

Saturday, July 12, 2014

Sequel

Filed under: Uncategorized — Tags: — m759 @ 9:00 AM

A sequel to the 1974 film
Thunderbolt and Lightfoot :

Contingent and Fluky

Some variations on a thunderbolt  theme:

Design Cube 2x2x2 for demonstrating Galois geometry

These variations also exemplify the larger
Verbum  theme:

Image-- Escher's 'Verbum'

Escher’s Verbum

Image-- Solomon's Cube

Solomon’s Cube

A search today for Verbum  in this journal yielded
a Georgetown 
University Chomskyite, Professor
David W. Lightfoot.

"Dr. Lightfoot writes mainly on syntactic theory,
language acquisition and historical change, which
he views as intimately related. He argues that
internal language change is contingent and fluky,
takes place in a sequence of bursts, and is best
viewed as the cumulative effect of changes in
individual grammars, where a grammar is a
'language organ' represented in a person's
mind/brain and embodying his/her language
faculty."

Some syntactic work by another contingent and fluky author
is related to the visual patterns illustrated above.

See Tecumseh Fitch  in this journal.

For other material related to the large Verbum  cube,
see posts for the 18th birthday of Harry Potter.

That birthday was also the upload date for the following:

See esp. the comments section.

Wednesday, June 4, 2014

Monkey Business

Filed under: Uncategorized — Tags: — m759 @ 8:48 PM

The title refers to a Scientific American weblog item
discussed here on May 31, 2014:

Some closely related material appeared here on
Dec. 30, 2011:

IMAGE- Quaternion group acting on an eightfold cube

A version of the above quaternion actions appeared
at math.stackexchange.com on March 12, 2013:

"Is there a geometric realization of Quaternion group?" —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note "GL(2,3) actions on a cube" of April 5, 1985).

Saturday, May 31, 2014

Quaternion Group Models:

Filed under: Uncategorized — Tags: — m759 @ 10:00 AM

The ninefold square, the eightfold cube, and monkeys.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

For posts on the models above, see quaternion
in this journal. For the monkeys, see

"Nothing Is More Fun than a Hypercube of Monkeys,"
Evelyn Lamb's Scientific American  weblog, May 19, 2014:

The Scientific American  item is about the preprint
"The Quaternion Group as a Symmetry Group,"
by Vi Hart and Henry Segerman (April 26, 2014):

See also  Finite Geometry and Physical Space.

Wednesday, May 21, 2014

The Tetrahedral Model of PG(3,2)

Filed under: Uncategorized — Tags: , — m759 @ 10:15 PM

The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).

The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.

Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square  model,
based on the 4×4 array I call the Galois tesseract  (at left below).

(Click to enlarge.)

Thursday, March 27, 2014

Diamond Space

Filed under: Uncategorized — Tags: — m759 @ 2:28 PM

(Continued)

Definition:  A diamond space  — informal phrase denoting
a subspace of AG(6, 2), the six-dimensional affine space
over the two-element Galois field.

The reason for the name:

IMAGE - The Diamond Theorem, including the 4x4x4 'Solomon's Cube' case

Click to enlarge.

Wednesday, January 22, 2014

A Riddle for Davos

Filed under: Uncategorized — Tags: — m759 @ 9:00 PM

Hexagonale Unwesen

Einstein and Thomas Mann, Princeton, 1938


IMAGE- Redefining the cube's symmetry planes: 13 planes, not 9.


See also the life of Diogenes Allen, a professor at Princeton
Theological Seminary, a life that reportedly ended on the date—
January 13, 2013— of the above Log24 post.

January 13 was also the dies natalis  of St. James Joyce.

Some related reflections —

"Praeterit figura huius mundi  " — I Corinthians 7:31 —

Conclusion of of "The Dead," by James Joyce—

The air of the room chilled his shoulders. He stretched himself cautiously along under the sheets and lay down beside his wife. One by one, they were all becoming shades. Better pass boldly into that other world, in the full glory of some passion, than fade and wither dismally with age. He thought of how she who lay beside him had locked in her heart for so many years that image of her lover's eyes when he had told her that he did not wish to live.

Generous tears filled Gabriel's eyes. He had never felt like that himself towards any woman, but he knew that such a feeling must be love. The tears gathered more thickly in his eyes and in the partial darkness he imagined he saw the form of a young man standing under a dripping tree. Other forms were near. His soul had approached that region where dwell the vast hosts of the dead. He was conscious of, but could not apprehend, their wayward and flickering existence. His own identity was fading out into a grey impalpable world: the solid world itself, which these dead had one time reared and lived in, was dissolving and dwindling.

A few light taps upon the pane made him turn to the window. It had begun to snow again. He watched sleepily the flakes, silver and dark, falling obliquely against the lamplight. The time had come for him to set out on his journey westward. Yes, the newspapers were right: snow was general all over Ireland. It was falling on every part of the dark central plain, on the treeless hills, falling softly upon the Bog of Allen and, farther westward, softly falling into the dark mutinous Shannon waves. It was falling, too, upon every part of the lonely churchyard on the hill where Michael Furey lay buried. It lay thickly drifted on the crooked crosses and headstones, on the spears of the little gate, on the barren thorns. His soul swooned slowly as he heard the snow falling faintly through the universe and faintly falling, like the descent of their last end, upon all the living and the dead.

Monday, December 9, 2013

Heaven Descending

Filed under: Uncategorized — Tags: — m759 @ 2:02 PM

An I Ching  study quoted in Waiting for Ogdoad (St. Andrew’s Day, 2013)—

(Click for clearer image.)

The author of the above I Ching  study calls his lattice “Arising Heaven.”

The following lattice might, therefore, be called “Heaven Descending.”

IMAGE- Construction of 'Heaven Descending' lattice

Click for the source, mentioned in Anatomy of a Cube (Sept. 18, 2011).

Friday, June 14, 2013

Object of Beauty

Filed under: Uncategorized — Tags: , — m759 @ 2:01 AM

This journal on July 5, 2007 —

The Eightfold Cube and its Inner Structure

“It is not clear why MySpace China will be successful."

— The Chinese magazine Caijing  in 2007, quoted in
Asia Sentinel  on July 12, 2011

This  journal on that same date,  July 12, 2011 —

http://www.log24.com/log/pix11B/110712-ObjectOfBeauty.jpg

See also the eightfold cube and kindergarten blocks
at finitegeometry.org/sc.

Friedrich Froebel, Froebel's Chief Writings on Education ,
Part II, "The Kindergarten," Ch. III, "The Third Play":

"The little ones, who always long for novelty and change,
love this simple plaything in its unvarying form and in its
constant number, even as they love their fairy tales with
the ever-recurring dwarfs…."

This journal, Group Actions, Nov. 14, 2012:

"Those who insist on vulgarizing their mathematics
may regard linear and affine group actions on the eight
cubes as the dance of  Snow White (representing (0,0,0))
and the Seven Dwarfs—

  ."

Edwin M. Knowles Fine China Company, 1991

Saturday, May 11, 2013

Core

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

Promotional description of a new book:

"Like Gödel, Escher, Bach  before it, Surfaces and Essences  will profoundly enrich our understanding of our own minds. By plunging the reader into an extraordinary variety of colorful situations involving language, thought, and memory, by revealing bit by bit the constantly churning cognitive mechanisms normally completely hidden from view, and by discovering in them one central, invariant core— the incessant, unconscious quest for strong analogical links to past experiences— this book puts forth a radical and deeply surprising new vision of the act of thinking."

"Like Gödel, Escher, Bach  before it…."

Or like Metamagical Themas

Rubik core:

Swarthmore Cube Project, 2008

Non- Rubik cores:

Of the odd  nxnxn cube:

Of the even  nxnxn cube:

The image “http://www.log24.com/theory/images/cube2x2x2.gif” cannot be displayed, because it contains errors.

Related material: The Eightfold Cube and

"A core component in the construction
is a 3-dimensional vector space  over F."

—  Page 29 of "A twist in the M24 moonshine story," 
      by Anne Taormina and Katrin Wendland.
      (Submitted to the arXiv on 13 Mar 2013.)

Monday, December 24, 2012

Eternal Recreation

Filed under: Uncategorized — Tags: , , — m759 @ 3:17 AM

Memories, Dreams, Reflections
by C. G. Jung

Recorded and edited By Aniela Jaffé, translated from the German
by Richard and Clara Winston, Vintage Books edition of April 1989

From pages 195-196:

“Only gradually did I discover what the mandala really is:
‘Formation, Transformation, Eternal Mind’s eternal recreation.’*
And that is the self, the wholeness of the personality, which if all
goes well is harmonious, but which cannot tolerate self-deceptions.”

* Faust , Part Two, trans. by Philip Wayne (Harmondsworth,
England, Penguin Books Ltd., 1959), p. 79. The original:

                   … Gestaltung, Umgestaltung, 
  Des ewigen Sinnes ewige Unterhaltung….

Jung’s “Formation, Transformation” quote is from the realm of
the Mothers (Faust Part Two, Act 1, Scene 5: A Dark Gallery).
The speaker is Mephistopheles.

See also Prof. Bruce J. MacLennan on this realm
in a Web page from his Spring 2005 seminar on Faust:

“In alchemical terms, F is descending into the dark, formless
primary matter from which all things are born. Psychologically
he is descending into the deepest regions of the
collective unconscious, to the source of life and all creation.
Mater (mother), matrix (womb, generative substance), and matter
all come from the same root. This is Faust’s next encounter with
the feminine, but it’s obviously of a very different kind than his
relationship with Gretchen.”

The phrase “Gestaltung, Umgestaltung ” suggests a more mathematical
approach to the Unterhaltung . Hence

Part I: Mothers

“The ultimate, deep symbol of motherhood raised to
the universal and the cosmic, of the birth, sending forth,
death, and return of all things in an eternal cycle,
is expressed in the Mothers, the matrices of all forms,
at the timeless, placeless originating womb or hearth
where chaos is transmuted into cosmos and whence
the forms of creation issue forth into the world of
place and time.”

— Harold Stein Jantz, The Mothers in Faust:
The Myth of Time and Creativity 
,
Johns Hopkins Press, 1969, page 37

Part II: Matrices

        

Part III: Spaces and Hypercubes

Click image for some background.

Part IV: Forms

Forms from the I Ching :

Click image for some background.

Forms from Diamond Theory :

Click image for some background.

Wednesday, November 14, 2012

Group Actions

Filed under: Uncategorized — Tags: — m759 @ 4:30 PM

The December 2012 Notices of the American
Mathematical Society  
has an ad on page 1564
(in a review of two books on vulgarized mathematics)
for three workshops next year on "Low-dimensional
Topology, Geometry, and Dynamics"—

(Only the top part of the ad is shown; for further details
see an ICERM page.)

(ICERM stands for Institute for Computational
and Experimental Research in Mathematics.)

The ICERM logo displays seven subcubes of
a 2x2x2 eight-cube array with one cube missing—

The logo, apparently a stylized image of the architecture 
of the Providence building housing ICERM, is not unlike
a picture of Froebel's Third Gift—

 

Froebel's third gift, the eightfold cube

© 2005 The Institute for Figuring

Photo by Norman Brosterman from the Inventing Kindergarten
exhibit at The Institute for Figuring (co-founded by Margaret Wertheim)

The eighth cube, missing in the ICERM logo and detached in the
Froebel Cubes photo, may be regarded as representing the origin
(0,0,0) in a coordinatized version of the 2x2x2 array—
in other words the cube invariant under linear , as opposed to
more general affine , permutations of the cubes in the array.

These cubes are not without relevance to the workshops' topics—
low-dimensional exotic geometric structures, group theory, and dynamics.

See The Eightfold Cube, A Simple Reflection Group of Order 168, and 
The Quaternion Group Acting on an Eightfold Cube.

Those who insist on vulgarizing their mathematics may regard linear
and affine group actions on the eight cubes as the dance of
Snow White (representing (0,0,0)) and the Seven Dwarfs—

.

Sunday, June 17, 2012

Congruent Group Actions

Filed under: Uncategorized — Tags: , — m759 @ 9:00 PM

A Google search today yielded no results
for the phrase "congruent group actions."

Places where this phrase might prove useful include—

Saturday, June 16, 2012

Chiral Problem

Filed under: Uncategorized — Tags: , — m759 @ 1:06 AM

In memory of William S. Knowles, chiral chemist, who died last Wednesday (June 13, 2012)—

Detail from the Harvard Divinity School 1910 bookplate in yesterday morning's post

"ANDOVERHARVARD THEOLOGICAL LIBRARY"

Detail from Knowles's obituary in this  morning's New York Times

William Standish Knowles was born in Taunton, Mass., on June 1, 1917. He graduated a year early from the Berkshire School, a boarding school in western Massachusetts, and was admitted to Harvard. But after being strongly advised that he was not socially mature enough for college, he did a second senior year of high school at another boarding school, Phillips Academy in Andover, N.H.

Dr. Knowles graduated from Harvard with a bachelor’s degree in chemistry in 1939….

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

From Pilate Goes to Kindergarten

The six congruent quaternion actions illustrated above are based on the following coordinatization of the eightfold cube

Problem: Is there a different coordinatization
 that yields greater symmetry in the pictures of
quaternion group actions?

A paper written in a somewhat similar spirit—

"Chiral Tetrahedrons as Unitary Quaternions"—

ABSTRACT: Chiral tetrahedral molecules can be dealt [with] under the standard of quaternionic algebra. Specifically, non-commutativity of quaternions is a feature directly related to the chirality of molecules….

Sunday, June 3, 2012

Child’s Play

Filed under: Uncategorized — Tags: — m759 @ 2:56 PM

(Continued)

“A set having three members is a single thing
wholly constituted by its members but distinct from them.
After this, the theological doctrine of the Trinity as
‘three in one’ should be child’s play.”

– Max Black, Caveats and Critiques: Philosophical Essays
in Language, Logic, and Art
, Cornell U. Press, 1975

IMAGE- The Trinity of Max Black (a 3-set, with its eight subsets arranged in a Hasse diagram that is also a cube)

Related material—

The Trinity Cube

IMAGE- The Trinity Cube (three interpenetrating planes that split the eightfold cube into its eight subcubes)

Saturday, May 19, 2012

G8

Filed under: Uncategorized — Tags: — m759 @ 8:00 PM

"The  group of 8" is a phrase from politics, not mathematics.
Of the five groups of order 8 (see today's noon post),

the one pictured* in the center, Z2 × Z2 × Z2 , is of particular
interest. See The Eightfold Cube. For a connection of this 
group of 8 to the last of the five pictured at noon, the
quaternion group, see Finite Geometry and Physical Space.

* The picture is of the group's cycle graph.

Monday, May 7, 2012

More on Triality

Filed under: Uncategorized — Tags: — m759 @ 4:20 PM

John Baez wrote in 1996 ("Week 91") that

"I've never quite seen anyone come right out
and admit that triality arises from the
permutations of the unit vectors i, j, and k
in 3d Euclidean space."

Baez seems to come close to doing this with a
somewhat different i , j , and kHurwitz
quaternions
— in his 2005 book review
quoted here yesterday.

See also the Log24 post of Jan. 4 on quaternions,
and the following figures. The actions on cubes
in the lower figure may be viewed as illustrating
(rather indirectly) the relationship of the quaternion
group's 24 automorphisms to the 24 rotational
symmetries of the cube.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

Sunday, January 22, 2012

Souvenir*

Filed under: Uncategorized — Tags: — m759 @ 8:09 PM

From life's box of chocolates

Happy birthday to Piper Laurie.

* Those who prefer their
souvenirs without sentiment
may consult the quaternions.

Wednesday, January 11, 2012

Language Game

Filed under: Uncategorized — Tags: — m759 @ 8:08 AM

Tension in the Common Room

IMAGE- 'Launched from Cuber' scene in 'X-Men: First Class'

In memory of population geneticist James F. Crow,
who died at 95 on January 4th.

Wednesday, January 4, 2012

Revision

Filed under: Uncategorized — Tags: , — m759 @ 8:00 PM

I revised the cubes image and added a new link to
an explanatory image in posts of Dec. 30 and Jan. 3
(and at finitegeometry.org). (The cubes now have
quaternion "i , j , k " labels and the cubes now
labeled "k " and "-k " were switched.)

I found some relevant remarks here and here.

Tuesday, January 3, 2012

Theorum

Filed under: Uncategorized — Tags: — m759 @ 7:48 AM

In memory of artist Ronald Searle

IMAGE- Ronald Searle, 'Pythagoras puzzled by one of my theorums,' from 'Down with Skool'

Searle reportedly died at 91 on December 30th.

From Log24 on that date

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Update of 9:29 PM EST Jan. 3, 2012

Theorum

 

From RationalWiki

Theorum (rhymes with decorum, apparently) is a neologism proposed by Richard Dawkins in The Greatest Show on Earth  to distinguish the scientific meaning of theory from the colloquial meaning. In most of the opening introduction to the show, he substitutes "theorum" for "theory" when referring to the major scientific theories such as evolution.

Problems with "theory"

Dawkins notes two general meanings for theory; the scientific one and the general sense that means a wild conjecture made up by someone as an explanation. The point of Dawkins inventing a new word is to get around the fact that the lay audience may not thoroughly understand what scientists mean when they say "theory of evolution". As many people see the phrase "I have a theory" as practically synonymous with "I have a wild guess I pulled out of my backside", there is often confusion about how thoroughly understood certain scientific ideas are. Hence the well known creationist argument that evolution is "just  a theory" – and the often cited response of "but gravity is also just  a theory".

To convey the special sense of thoroughness implied by the word theory in science, Dawkins borrowed the mathematical word "theorem". This is used to describe a well understood mathematical concept, for instance Pythagoras' Theorem regarding right angled triangles. However, Dawkins also wanted to avoid the absolute meaning of proof associated with that word, as used and understood by mathematicians. So he came up with something that looks like a spelling error. This would remove any person's emotional attachment or preconceptions of what the word "theory" means if it cropped up in the text of The Greatest Show on Earth , and so people would (in "theory ") have no other choice but to associate it with only the definition Dawkins gives.

This phrase has completely failed to catch on, that is, if Dawkins intended it to catch on rather than just be a device for use in The Greatest Show on Earth . When googled, Google will automatically correct the spelling to theorem instead, depriving this very page its rightful spot at the top of the results.

See also

 

Some backgound— In this journal, "Diamond Theory of Truth."

Thursday, May 5, 2011

Beyond Forgetfulness

Filed under: Uncategorized — Tags: , — m759 @ 10:10 AM

From this journal on July 23, 2007

It is not enough to cover the rock with leaves.
We must be cured of it by a cure of the ground
Or a cure of ourselves, that is equal to a cure

Of the ground, a cure beyond forgetfulness.
And yet the leaves, if they broke into bud,
If they broke into bloom, if they bore fruit
,

And if we ate the incipient colorings
Of their fresh culls might be a cure of the ground.

– Wallace Stevens, "The Rock"

This quotation from Stevens (Harvard class of 1901) was posted here on when Daniel Radcliffe (i.e., Harry Potter) turned 18 in July 2007.

Other material from that post suggests it is time for a review of magic at Harvard.

On September 9, 2007, President Faust of Harvard

"encouraged the incoming class to explore Harvard’s many opportunities.

'Think of it as a treasure room of hidden objects Harry discovers at Hogwarts,' Faust said."

That class is now about to graduate.

It is not clear what "hidden objects" it will take from four years in the Harvard treasure room.

Perhaps the following from a book published in 1985 will help…

http://www.log24.com/log/pix11A/110505-MetamagicalIntro.gif

The March 8, 2011, Harvard Crimson  illustrates a central topic of Metamagical Themas , the Rubik's Cube

http://www.log24.com/log/pix11A/110427-CrimsonAtlas300w.jpg

Hofstadter in 1985 offered a similar picture—

http://www.log24.com/log/pix11A/110505-RubikGlobe.gif

Hofstadter asks in his Metamagical  introduction, "How can both Rubik's Cube and nuclear Armageddon be discussed at equal length in one book by one author?"

For a different approach to such a discussion, see Paradigms Lost, a post made here a few hours before the March 11, 2011, Japanese earthquake, tsunami, and nuclear disaster—

http://www.log24.com/log/pix11A/110427-ParadigmsLost.jpg

Whether Paradigms Lost is beyond forgetfulness is open to question.

Perhaps a later post, in the lighthearted spirit of Faust, will help. See April 20th's "Ready When You Are, C.B."

Monday, February 21, 2011

The Abacus Conundrum*

Filed under: Uncategorized — Tags: , — m759 @ 2:02 PM

From Das Glasperlenspiel  (Hermann Hesse, 1943) —

“Bastian Perrot… constructed a frame, modeled on a child’s abacus, a frame with several dozen wires on which could be strung glass beads of various sizes, shapes, and colors. The wires corresponded to the lines of the musical staff, the beads to the time values of the notes, and so on. In this way he could represent with beads musical quotations or invented themes, could alter, transpose, and develop them, change them and set them in counterpoint to one another. In technical terms this was a mere plaything, but the pupils liked it.… …what later evolved out of that students’ sport and Perrot’s bead-strung wires bears to this day the name by which it became popularly known, the Glass Bead Game.”

From "Mimsy Were the Borogoves" (Lewis Padgett, 1943)—

…"Paradine looked up. He frowned, staring. What in—
…"Is that an abacus?" he asked. "Let's see it, please."
…Somewhat unwillingly Scott brought the gadget across to his father's chair. Paradine blinked. The "abacus," unfolded, was more than a foot square, composed of thin,  rigid wires that interlocked here and there. On the wires the colored beads were strung. They could be slid back and forth, and from one support to another, even at the points of jointure. But— a pierced bead couldn't cross interlocking  wires—
…So, apparently, they weren't pierced. Paradine looked closer. Each small sphere had a deep groove running around it, so that it could be revolved and slid along the wire at the same time. Paradine tried to pull one free. It clung as though magnetically. Iron? It looked more like plastic.
…The framework itself— Paradine wasn't a mathematician. But the angles formed by the wires were vaguely shocking, in their ridiculous lack of Euclidean logic. They were a maze. Perhaps that's what the gadget was— a puzzle.
…"Where'd you get this?"
…"Uncle Harry gave it to me," Scott said on the spur of the moment. "Last Sunday, when he came over." Uncle Harry was out of town, a circumstance Scott well knew. At the age of seven, a boy soon learns that the vagaries of adults follow a certain definite pattern, and that they are fussy about the donors of gifts. Moreover, Uncle Harry would not return for several weeks; the expiration of that period was unimaginable to Scott, or, at least, the fact that his lie would ultimately be discovered meant less to him than the advantages of being allowed to keep the toy.
…Paradine found himself growing slightly confused as he attempted to manipulate the beads. The angles were vaguely illogical. It was like a puzzle. This red bead, if slid along this  wire to that  junction, should reach there— but it didn’t. A maze, odd, but no doubt instructive. Paradine had a well-founded feeling that he’d have no patience with the thing himself.
…Scott did, however, retiring to a corner and sliding beads around with much fumbling and grunting. The beads did  sting, when Scott chose the wrong ones or tried to slide them in the wrong direction. At last he crowed exultantly.
…”I did it, dad!”
…””Eh? What? Let’s see.” The device looked exactly the same to Paradine, but Scott pointed and beamed.
…”I made it disappear.”
…”It’s still there.”
…”That blue bead. It’s gone now.”
…Paradine didn’t believe that, so he merely snorted. Scott puzzled over the framework again. He experimented. This time there were no shocks, even slight. The abacus had showed him the correct method. Now it was up to him to do it on his own. The bizarre angles of the wires seemed a little less confusing now, somehow.
…It was a most instructive toy—
…It worked, Scott thought, rather like the crystal cube.

* Title thanks to Saturday Night Live  (Dec. 4-5, 2010).

Thursday, February 5, 2009

Thursday February 5, 2009

Filed under: Uncategorized — Tags: — m759 @ 1:00 PM

Through the
Looking Glass:

A Sort of Eternity

From the new president's inaugural address:

"… in the words of Scripture, the time has come to set aside childish things."

The words of Scripture:

9 For we know in part, and we prophesy in part.
10 But when that which is perfect is come, then that which is in part shall be done away.
11 When I was a child, I spake as a child, I understood as a child, I thought as a child: but when I became a man, I put away childish things.
12 For now we see through a glass, darkly, but then face to face: now I know in part; but then shall I know even as also I am known.

 

First Corinthians 13

"through a glass"

[di’ esoptrou].
By means of
a mirror [esoptron]
.

Childish things:

Froebel's third gift, the eightfold cube
© 2005 The Institute for Figuring

 

Photo by Norman Brosterman
fom the Inventing Kindergarten
exhibit at The Institute for Figuring
(co-founded by Margaret Wertheim)

Not-so-childish:

 

Three planes through
the center of a cube
that split it into
eight subcubes:
Cube subdivided into 8 subcubes by planes through the center
Through a glass, darkly:

A group of 8 transformations is
generated by affine reflections
in the above three planes.
Shown below is a pattern on
the faces of the 2x2x2 cube
 that is symmetric under one of
these 8 transformations–
a 180-degree rotation:

Design Cube 2x2x2 for demonstrating Galois geometry

(Click on image
for further details.)

But then face to face:

A larger group of 1344,
rather than 8, transformations
of the 2x2x2 cube
is generated by a different
sort of affine reflections– not
in the infinite Euclidean 3-space
over the field of real numbers,
but rather in the finite Galois
3-space over the 2-element field.

Galois age fifteen, drawn by a classmate.

Galois age fifteen,
drawn by a classmate.

These transformations
in the Galois space with
finitely many points
produce a set of 168 patterns
like the one above.
For each such pattern,
at least one nontrivial
transformation in the group of 8
described above is a symmetry
in the Euclidean space with
infinitely many points.

For some generalizations,
see Galois Geometry.

Related material:

The central aim of Western religion–

 

 

"Each of us has something to offer the Creator...
the bridging of
 masculine and feminine,
 life and death.
It's redemption.... nothing else matters."
-- Martha Cooley in The Archivist (1998)

The central aim of Western philosophy–

 Dualities of Pythagoras
 as reconstructed by Aristotle:
  Limited Unlimited
  Odd Even
  Male Female
  Light Dark
  Straight Curved
  ... and so on ....

"Of these dualities, the first is the most important; all the others may be seen as different aspects of this fundamental dichotomy. To establish a rational and consistent relationship between the limited [man, etc.] and the unlimited [the cosmos, etc.] is… the central aim of all Western philosophy."

— Jamie James in The Music of the Spheres (1993)

"In the garden of Adding
live Even and Odd…
And the song of love's recision
is the music of the spheres."

— The Midrash Jazz Quartet in City of God, by E. L. Doctorow (2000)

A quotation today at art critic Carol Kino's website, slightly expanded:

"Art inherited from the old religion
the power of consecrating things
and endowing them with
a sort of eternity;
museums are our temples,
and the objects displayed in them
are beyond history."

— Octavio Paz,"Seeing and Using: Art and Craftsmanship," in Convergences: Essays on Art and Literature (New York: Harcourt Brace Jovanovich 1987), 52 

From Brian O'Doherty's 1976 Artforum essays– not on museums, but rather on gallery space:

"Inside the White Cube"

"We have now reached
a point where we see
not the art but the space first….
An image comes to mind
of a white, ideal space
that, more than any single picture,
may be the archetypal image
of 20th-century art."

http://www.log24.com/log/pix09/090205-cube2x2x2.gif

"Space: what you
damn well have to see."

— James Joyce, Ulysses  

Sunday, May 25, 2008

Sunday May 25, 2008

Filed under: Uncategorized — Tags: — m759 @ 9:00 AM
Wechsler Cubes

 "Confusion is nothing new."
— Song lyric, Cyndi Lauper  

Part I:
Magister Ludi

Hermann Hesse's 1943 The Glass Bead Game (Picador paperback, Dec. 6, 2002, pp. 139-140)–

"For the present, the Master showed him a bulky memorandum, a proposal he had received from an organist– one of the innumerable proposals which the directorate of the Game regularly had to examine. Usually these were suggestions for the admission of new material to the Archives. One man, for example, had made a meticulous study of the history of the madrigal and discovered in the development of the style a curved that he had expressed both musically and mathematically, so that it could be included in the vocabulary of the Game. Another had examined the rhythmic structure of Julius Caesar's Latin and discovered the most striking congruences with the results of well-known studies of the intervals in Byzantine hymns. Or again some fanatic had once more unearthed some new cabala hidden in the musical notation of the fifteenth century. Then there were the tempestuous letters from abstruse experimenters who could arrive at the most astounding conclusions from, say, a comparison of the horoscopes of Goethe and Spinoza; such letters often included pretty and seemingly enlightening geometric drawings in several colors."

Part II:
A Bulky Memorandum

From Siri Hustvedt, author of Mysteries of the Rectangle: Essays on Painting (Princeton Architectural Press, 2005)– What I Loved: A Novel (Picador paperback, March 1, 2004, page 168)–

A description of the work of Bill Wechsler, a fictional artist:

"Bill worked long hours on a series of autonomous pieces about numbers. Like O's Journey, the works took place inside glass cubes, but these were twice as large– about two feet square. He drew his inspiration from sources as varied as the Cabbala, physics, baseball box scores, and stock market reports. He painted, cut, sculpted, distorted, and broke the numerical signs in each work until they became unrecognizable. He included figures, objects, books, windows, and always the written word for the number. It was rambunctious art, thick with allusion– to voids, blanks, holes, to monotheism and the individual, the the dialectic and yin-yang, to the Trinity, the three fates, and three wishes, to the golden rectangle, to seven heavens, the seven lower orders of the sephiroth, the nine Muses, the nine circles of Hell, the nine worlds of Norse mythology, but also to popular references like A Better Marriage in Five Easy Lessons and Thinner Thighs in Seven Days. Twelve-step programs were referred to in both cube one and cube two. A miniature copy of a book called The Six Mistakes Parents Make Most Often lay at the bottom of cube six. Puns appeared, usually well disguised– one, won; two, too, and Tuesday; four, for, forth; ate, eight. Bill was partial to rhymes as well, both in images and words. In cube nine, the geometric figure for a line had been painted on one glass wall. In cube three, a tiny man wearing the black-and-white prison garb of cartoons and dragging a leg iron has

— End of page 168 —

opened the door to his cell. The hidden rhyme is "free." Looking closely through the walls of the cube, one can see the parallel rhyme in another language: the German word drei is scratched into one glass wall. Lying at the bottom of the same box is a tiny black-and-white photograph cut from a book that shows the entrance to Auschwitz: ARBEIT MACHT FREI. With every number, the arbitrary dance of associations worked togethere to create a tiny mental landscape that ranged in tone from wish-fulfillment dream to nightmare. Although dense, the effect of the cubes wasn't visually disorienting. Each object, painting, drawing, bit of text, or sculpted figure found its rightful place under the glass according to the necessary, if mad, logic of numerical, pictorial, and verbal connection– and the colors of each were startling. Every number had been given a thematic hue. Bill had been interested in Goethe's color wheel and in Alfred Jensen's use of it in his thick, hallucinatory paintings of numbers. He had assigned each number a color. Like Goethe, he included black and white, although he didn't bother with the poet's meanings. Zero and one were white. Two was blue. Three was red, four was yellow, and he mixed colors: pale blue for five, purples in six, oranges in seven, greens in eight, and blacks and grays in nine. Although other colors and omnipresent newsprint always intruded on the basic scheme, the myriad shades of a single color dominated each cube.

The number pieces were the work of a man at the top of his form. An organic extension of everything Bill had done before, these knots of symbols had an explosive effect. The longer I looked at them, the more the miniature constructions seemed on the brink of bursting from internal pressure. They were tightly orchestrated semantic bombs through which Bill laid bare the arbitrary roots of meaning itself– that peculiar social contract generated by little squiggles, dashes, lines, and loops on a page."

Part III:
Wechsler Cubes

(named not for
Bill Wechsler, the
fictional artist above,
but for the non-fictional
   David Wechsler) —

From 2002:

Above: Dr. Harrison Pope, Harvard professor of psychiatry, demonstrates the use of the Wechsler Adult Intelligence Scale "block design" subtest.


Part IV:
A Magic Gallery
 
Log24, March 4, 2004
 

ZZ
WW

Figures from the
Kaleidoscope Puzzle
of Steven H. Cullinane:


Poem by Eugen Jost:
Zahlen und Zeichen,
Wörter und Worte

Mit Zeichen und Zahlen
vermessen wir Himmel und Erde
schwarz
auf weiss
schaffen wir neue Welten
oder gar Universen


 Numbers and Names,
Wording and Words


With numbers and names
we measure heaven and earth
black
on white
we create new worlds
and universes


English translation
by Catherine Schelbert



A related poem:

Alphabets
by Hermann Hesse

From time to time
we take our pen in hand
and scribble symbols
on a blank white sheet
Their meaning is
at everyone's command;
it is a game whose rules
are nice and neat.

But if a savage
or a moon-man came
and found a page,
a furrowed runic field,
and curiously studied
lines and frame:
How strange would be
the world that they revealed.
a magic gallery of oddities.
He would see A and B
as man and beast,
as moving tongues or
arms or legs or eyes,
now slow, now rushing,
all constraint released,
like prints of ravens'
feet upon the snow.
He'd hop about with them,
fly to and fro,
and see a thousand worlds
of might-have-been
hidden within the black
and frozen symbols,
beneath the ornate strokes,
the thick and thin.
He'd see the way love burns
and anguish trembles,
He'd wonder, laugh,
shake with fear and weep
because beyond this cipher's
cross-barred keep
he'd see the world
in all its aimless passion,
diminished, dwarfed, and
spellbound in the symbols,
and rigorously marching
prisoner-fashion.
He'd think: each sign
all others so resembles
that love of life and death,
or lust and anguish,
are simply twins whom
no one can distinguish…
until at last the savage
with a sound
of mortal terror
lights and stirs a fire,
chants and beats his brow
against the ground
and consecrates the writing
to his pyre.
Perhaps before his
consciousness is drowned
in slumber there will come
to him some sense
of how this world
of magic fraudulence,
this horror utterly
behind endurance,
has vanished as if
it had never been.
He'll sigh, and smile,
and feel all right again.

— Hermann Hesse (1943),
"Buchstaben," from
Das Glasperlenspiel,
translated by
Richard and Clara Winston

Saturday, May 10, 2008

Saturday May 10, 2008

Filed under: Uncategorized — Tags: , , , — m759 @ 8:00 AM
MoMA Goes to
Kindergarten

"… the startling thesis of Mr. Brosterman's new book, 'Inventing Kindergarten' (Harry N. Abrams, $39.95): that everything the giants of modern art and architecture knew about abstraction they learned in kindergarten, thanks to building blocks and other educational toys designed by Friedrich Froebel, a German educator, who coined the term 'kindergarten' in the 1830's."

— "Was Modernism Born
     in Toddler Toolboxes?"
     by Trip Gabriel, New York Times,
     April 10, 1997
 

RELATED MATERIAL

Figure 1 —
Concept from 1819:

Cubic crystal system
(Footnotes 1 and 2)

Figure 2 —
The Third Gift, 1837:

Froebel's third gift

Froebel's Third Gift

Froebel, the inventor of
kindergarten, worked as
an assistant to the
crystallographer Weiss
mentioned in Fig. 1.

(Footnote 3)

Figure 3 —
The Third Gift, 1906:

Seven partitions of the eightfold cube in a book from 1906

Figure 4 —
Solomon's Cube,
1981 and 1983:

Solomon's Cube - A 1981 design by Steven H. Cullinane

Figure 5 —
Design Cube, 2006:

Design Cube 4x4x4 by Steven H. Cullinane

The above screenshot shows a
moveable JavaScript display
of a space of six dimensions
(over the two-element field).

(To see how the display works,
try the Kaleidoscope Puzzle first.)

For some mathematical background, see

Footnotes:
 
1. Image said to be after Holden and Morrison, Crystals and Crystal Growing, 1982
2. Curtis Schuh, "The Library: Biobibliography of Mineralogy," article on Mohs
3. Bart Kahr, "Crystal Engineering in Kindergarten" (pdf), Crystal Growth & Design, Vol. 4 No. 1, 2004, 3-9

Monday, July 23, 2007

Monday July 23, 2007

Filed under: Uncategorized — Tags: , , , — m759 @ 8:00 AM
 
Daniel Radcliffe
is 18 today.
 
Daniel Radcliffe as Harry Potter
 

Greetings.

“The greatest sorcerer (writes Novalis memorably)
would be the one who bewitched himself to the point of
taking his own phantasmagorias for autonomous apparitions.
Would not this be true of us?”

Jorge Luis Borges, “Avatars of the Tortoise”

El mayor hechicero (escribe memorablemente Novalis)
sería el que se hechizara hasta el punto de
tomar sus propias fantasmagorías por apariciones autónomas.
¿No sería este nuestro caso?”

Jorge Luis Borges, “Los Avatares de la Tortuga

Autonomous Apparition
 
 

At Midsummer Noon:

 
“In Many Dimensions (1931)
Williams sets before his reader the
mysterious Stone of King Solomon,
an image he probably drew from
a brief description in Waite’s
The Holy Kabbalah (1929) of
a supernatural cubic stone
on which was inscribed
‘the Divine Name.’”
 
The image “http://www.log24.com/log/pix07/070624-Waite.gif” cannot be displayed, because it contains errors.
 
Related material:
 
It is not enough to cover the rock with leaves.
We must be cured of it by a cure of the ground
Or a cure of ourselves, that is equal to a cure

 

Of the ground, a cure beyond forgetfulness.
And yet the leaves, if they broke into bud,
If they broke into bloom, if they bore fruit
,

And if we ate the incipient colorings
Of their fresh culls might be a cure of the ground.

– Wallace Stevens, “The Rock”

 
See also
 
as well as
Hofstadter on
his magnum opus:
 
“… I realized that to me,
Gödel and Escher and Bach
were only shadows
cast in different directions by
some central solid essence.
I tried to reconstruct
the central object, and
came up with this book.”
 
Goedel Escher Bach cover

Hofstadter’s cover.

 
Here are three patterns,
“shadows” of a sort,
derived from a different
“central object”:
 
Faces of Solomon's Cube, related to Escher's 'Verbum'

Click on image for details.

Saturday, November 5, 2005

Saturday November 5, 2005

Filed under: Uncategorized — Tags: — m759 @ 4:24 PM

Contrapuntal Themes
in a Shadowland

 
(See previous entry.)

Douglas Hofstadter on his magnum opus:

"… I realized that to me, Gödel and Escher and Bach were only shadows cast in different directions by some central solid essence. I tried to reconstruct the central object, and came up with this book."

The image “http://www.log24.com/theory/images/GEBcover.jpg” cannot be displayed, because it contains errors.
Hofstadter's cover

Here are three patterns,
"shadows" of a sort,
derived from a different
"central object":

The image “http://www.log24.com/theory/images/GEB.jpg” cannot be displayed, because it contains errors.

For details, see
Solomon's Cube.

Related material:
The reference to a
"permutation fugue"
(pdf) in an article on
Gödel, Escher, Bach.

Friday, May 6, 2005

Friday May 6, 2005

Filed under: Uncategorized — Tags: , — m759 @ 7:28 PM

Fugues

"To improvise an eight-part fugue
is really beyond human capability."

— Douglas R. Hofstadter,
Gödel, Escher, Bach

The image “http://www.log24.com/theory/images/cube2x2x2.gif” cannot be displayed, because it contains errors.

Order of a projective
 automorphism group:
168

"There are possibilities of
contrapuntal arrangement
of subject-matter."

— T. S. Eliot, quoted in
Origins of Form in Four Quartets.

The image “http://www.log24.com/theory/images/Grid4x4A.gif” cannot be displayed, because it contains errors.

Order of a projective
 automorphism group:
20,160

Sunday, August 17, 2003

Sunday August 17, 2003

Filed under: Uncategorized — Tags: — m759 @ 6:21 PM

Diamond theory is the theory of affine groups over GF(2) acting on small square and cubic arrays. In the simplest case, the symmetric group of degree 4 acts on a two-colored diamond figure like that in Plato's Meno dialogue, yielding 24 distinct patterns, each of which has some ordinary or color-interchange symmetry .

This symmetry invariance can be generalized to (at least) a group of order approximately 1.3 trillion acting on a 4x4x4 array of cubes.

The theory has applications to finite geometry and to the construction of the large Witt design underlying the Mathieu group of degree 24.

Further Reading:

Powered by WordPress