Log24

Thursday, June 30, 2016

Rubik vs. Galois: Preconception vs. Pre-conception

Filed under: General,Geometry — Tags: , , — m759 @ 1:20 pm

From Psychoanalytic Aesthetics: The British School ,
by Nicola Glover, Chapter 4  —

In his last theoretical book, Attention and Interpretation  (1970), Bion has clearly cast off the mathematical and scientific scaffolding of his earlier writings and moved into the aesthetic and mystical domain. He builds upon the central role of aesthetic intuition and the Keats's notion of the 'Language of Achievement', which

… includes language that is both
a prelude to action and itself a kind of action;
the meeting of psycho-analyst and analysand
is itself an example of this language.29.

Bion distinguishes it from the kind of language which is a substitute  for thought and action, a blocking of achievement which is lies [sic ] in the realm of 'preconception' – mindlessness as opposed to mindfulness. The articulation of this language is possible only through love and gratitude; the forces of envy and greed are inimical to it..

This language is expressed only by one who has cast off the 'bondage of memory and desire'. He advised analysts (and this has caused a certain amount of controversy) to free themselves from the tyranny of the past and the future; for Bion believed that in order to make deep contact with the patient's unconscious the analyst must rid himself of all preconceptions about his patient – this superhuman task means abandoning even the desire to cure . The analyst should suspend memories of past experiences with his patient which could act as restricting the evolution of truth. The task of the analyst is to patiently 'wait for a pattern to emerge'. For as T.S. Eliot recognised in Four Quartets , 'only by the form, the pattern / Can words or music reach/ The stillness'.30. The poet also understood that 'knowledge' (in Bion's sense of it designating a 'preconception' which blocks  thought, as opposed to his designation of a 'pre -conception' which awaits  its sensory realisation), 'imposes a pattern and falsifies'

For the pattern is new in every moment
And every moment is a new and shocking
Valuation of all we have ever been.31.

The analyst, by freeing himself from the 'enchainment to past and future', casts off the arbitrary pattern and waits for new aesthetic form to emerge, which will (it is hoped) transform the content of the analytic encounter.

29. Attention and Interpretation  (Tavistock, 1970), p. 125

30. Collected Poems  (Faber, 1985), p. 194.

31. Ibid., p. 199.

See also the previous posts now tagged Bion.

Preconception  as mindlessness is illustrated by Rubik's cube, and
"pre -conception" as mindfulness is illustrated by n×n×n Froebel  cubes
for n= 1, 2, 3, 4. 

Suitably coordinatized, the Froebel  cubes become Galois  cubes,
and illustrate a new approach to the mathematics of space .

Friday, September 9, 2011

Galois vs. Rubik

(Continued from Abel Prize, August 26)

IMAGE- Elementary Galois Geometry over GF(3)

The situation is rather different when the
underlying Galois field has two rather than
three elements… See Galois Geometry.

Image-- Sugar cube in coffee, from 'Bleu'

The coffee scene from "Bleu"

Related material from this journal:

The Dream of
the Expanded Field

Image-- 4x4 square and 4x4x4 cube

Tuesday, August 27, 2024

For Rubik Worshippers

Filed under: General — Tags: , — m759 @ 2:37 pm

Galois space of six dimensions represented in Euclidean spaces of three and of two dimensions

The above is six-dimensional as an affine  space, but only five-dimensional
as a  projective  space . . . the space PG(5, 2).

As the domain of the smallest model of the Klein correspondence and the
Klein quadric, PG (5,2) is not without mathematical importance.

See Chess Bricks and Ovid.group.

This post was suggested by the date July 6, 2024 in a Warren, PA obituary
and by that date in this  journal.

Sunday, June 4, 2023

The Galois Core

Filed under: General — Tags: , , — m759 @ 9:24 pm
 

  Rubik core:

 

Swarthmore Cube Project, 2008


Non- Rubik core:

Illustration for weblog post 'The Galois Core'

Central structure from a Galois plane

    (See image below.)

Some small Galois spaces (the Cullinane models)

Monday, June 27, 2011

Galois Cube Revisited

Filed under: General,Geometry — Tags: — m759 @ 1:00 pm

http://www.log24.com/log/pix11A/110427-Cube27.jpg
   The 3×3×3 Galois Cube

    See Unity and Multiplicity.

   This cube, unlike Rubik's, is a
    purely mathematical structure.

    Its properties may be compared
    with those of the order-2  Galois
    cube (of eight subcubes, or
    elements ) and the order-4  Galois
    cube (of 64 elements). The
    order-3  cube (of 27 elements)
    lacks, because it is based on
    an odd  prime, the remarkable
    symmetry properties of its smaller
    and larger cube neighbors.

Tuesday, October 24, 2023

A Bond with Reality:  The Geometry of Cuts

Filed under: General — Tags: , , , — m759 @ 12:12 pm


Illustrations of object and gestures
from finitegeometry.org/sc/ —

Object

Gestures

An earlier presentation of the above
seven partitions of the eightfold cube:

Seven partitions of the 2x2x2 cube in a book from 1906

Related mathematics:

The use  of binary coordinate systems
as a conceptual tool

Natural physical  transformations of square or cubical arrays
of actual physical cubes (i.e., building blocks) correspond to
natural algebraic  transformations of vector spaces over GF(2).
This was apparently not previously known.

See "The Thing and I."

and . . .

Galois.space .

 

Related entertainment:

Or Matt Helm by way of a Jedi cube.

Friday, May 27, 2022

Plan 9 from Disney

Filed under: General — m759 @ 3:00 am

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

Scholium

Abstracting from narrative to structure, and from structure
to pure number, the Tablet of Ahkmenrah represents the
number 9 and the Cube of Rubik represents the number 27.

Returning from pure abstract numbers to concrete representations,
9 yields the structures in Log24 posts tagged Triangle.graphics,
and 27 yields a Galois  cube .

Tuesday, May 24, 2022

Playing the Palace

Filed under: General — m759 @ 9:54 am

From a Jamestown (NY) Post-Journal  article yesterday on
"the sold-out 10,000 Maniacs 40th anniversary concert at
The Reg Lenna Center Saturday" —

" 'The theater has a special place in our hearts. It’s played
a big part in my life,' Gustafson said.

Before being known as The Reg Lenna Center for The Arts,
it was formerly known as The Palace Theater. He recalled
watching movies there as a child…."

This, and the band's name, suggest some memories perhaps
better suited to the cinematic philosophy behind "Plan 9 from
Outer Space."

IMAGE- The Tablet of Ahkmenrah, from 'Night at the Museum'

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

The above 3×3 Tablet of Ahkmenrah  image comes from
a Log24 search for the finite (i.e., Galois) field GF(3) that 
was, in turn, suggested by last night's post "Making Space."

See as well a mysterious document from a website in Slovenia
that mentions a 3×3 array "relating to nine halls of a mythical
palace where rites were performed in the 1st century AD" —

Friday, December 31, 2021

Aesthetics in Academia

Filed under: General — Tags: , — m759 @ 9:33 am

Related art — The non-Rubik 3x3x3 cube —

The above structure illustrates the affine space of three dimensions
over the three-element finite (i.e., Galois) field, GF(3). Enthusiasts
of Judith Brown's nihilistic philosophy may note the "radiance" of the
13 axes of symmetry within the "central, structuring" subcube.

I prefer the radiance  (in the sense of Aquinas) of the central, structuring 
eightfold cube at the center of the affine space of six dimensions over
the two-element field GF(2).

Wednesday, June 29, 2016

Space Jews

Filed under: General,Geometry — Tags: — m759 @ 9:00 pm

For the Feast of SS. Peter and Paul

In memory of Alvin Toffler and Simon Ramo,
a review of figures from the midnight that began
the date of their deaths, June 27, 2016 —

http://www.log24.com/log/pix11A/110427-Cube27.jpg

   The 3×3×3 Galois Cube

See also Rubik in this journal.

Friday, November 14, 2014

Another Opening, Another Show

Filed under: General,Geometry — m759 @ 9:00 pm

“What happens when you mix the brilliant wit of Noel Coward
with the intricate plotting of Agatha Christie? Set during a
weekend in an English country manor in 1932, Death by Design
is a delightful and mysterious ‘mash-up’ of two of the greatest
English writers of all time. Edward Bennett, a playwright, and
his wife Sorel Bennett, an actress, flee London and head to
Cookham after a disastrous opening night. But various guests
arrive unexpectedly….”

Samuel French (theatrical publisher) on a play that
opened in Houston on September 9, 2011.

Related material:

Saturday, October 18, 2014

Educational Series

Filed under: General,Geometry — Tags: , , — m759 @ 1:01 pm

Barron's Educational Series (click to enlarge):

The Tablet of Ahkmenrah:

IMAGE- The Tablet of Ahkmenrah, from 'Night at the Museum'

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

Another educational series (this journal):

Image-- Rosalind Krauss and The Ninefold Square

Art theorist Rosalind Krauss and The Ninefold Square

IMAGE- Elementary Galois Geometry over GF(3)

Sunday, April 27, 2014

Sunday School

Filed under: General,Geometry — Tags: , , — m759 @ 9:00 am

Galois and Abel vs. Rubik

(Continued)

"Abel was done to death by poverty, Galois by stupidity.
In all the history of science there is no completer example
of the triumph of crass stupidity…."

— Eric Temple Bell,  Men of Mathematics

Gray Space  (Continued)

… For The Church of Plan 9.

Wednesday, July 11, 2012

Cuber

Filed under: General,Geometry — m759 @ 11:00 am

(Continued)

For Pete Rustan, space recon expert, who died on June 28—

(Click to enlarge.)

See also Galois vs. Rubik and Group Theory Template.

Thursday, April 12, 2012

Mythopoetic*

Filed under: General,Geometry — m759 @ 9:29 pm

"Is Space Digital?" 

Cover storyScientific American  magazine, February 2012

"The idea that space may be digital
  is a fringe idea of a fringe idea
  of a speculative subfield of a subfield."

— Physicist Sabine Hossenfelder
     at her weblog on Feb. 5, 2012

"A quantization of space/time
 is a holy grail for many theorists…."

— Peter Woit in a comment at his physics weblog today

See also 

* See yesterday's Steiner's Systems.

Saturday, January 14, 2012

Damnation Morning*

Filed under: General,Geometry — Tags: , , — m759 @ 5:24 am

(Continued)

The following is adapted from a 2011 post

IMAGE- Galois vs. Rubik

* The title, that of a Fritz Leiber story, is suggested by
   the above picture of the symmetry axes of the square.
   Click "Continued" above for further details. See also
   last Wednesday's Cuber.

Sunday, August 28, 2011

The Cosmic Part

Yesterday's midday post, borrowing a phrase from the theology of Marvel Comics,
offered Rubik's mechanical contrivance as a rather absurd "Cosmic Cube."

A simpler candidate for the "Cube" part of that phrase:

http://www.log24.com/log/pix10/100214-Cube2x2x2.gif

The Eightfold Cube

As noted elsewhere, a simple reflection group* of order 168 acts naturally on this structure.

"Because of their truly fundamental role in mathematics,
even the simplest diagrams concerning finite reflection groups
(or finite mirror systems, or root systems—
the languages are equivalent) have interpretations
of cosmological proportions."

Alexandre V. Borovik in "Coxeter Theory: The Cognitive Aspects"

Borovik has a such a diagram—

http://www.log24.com/log/pix11B/110828-BorovikM.jpg

The planes in Borovik's figure are those separating the parts of the eightfold cube above.

In Coxeter theory, these are Euclidean hyperplanes. In the eightfold cube, they represent three of seven projective points that are permuted by the above group of order 168.

In light of Borovik's remarks, the eightfold cube might serve to illustrate the "Cosmic" part of the Marvel Comics phrase.

For some related theological remarks, see Cube Trinity in this journal.

Happy St. Augustine's Day.

* I.e., one generated by reflections : group actions that fix a hyperplane pointwise. In the eightfold cube, viewed as a vector space of 3 dimensions over the 2-element Galois field, these hyperplanes are certain sets of four subcubes.

Saturday, August 27, 2011

Cosmic Cube*

IMAGE- Anthony Hopkins exorcises a Rubik cube

Prequel (Click to enlarge)

IMAGE- Galois vs. Rubik: Posters for Abel Prize, Oslo, 2008

Background —

IMAGE- 'Group Theory' Wikipedia article with Rubik's cube as main illustration and argument by a cuber for the image's use

See also Rubik in this journal.

* For the title, see Groups Acting.

Thursday, March 10, 2011

Paradigms Lost

Filed under: General,Geometry — Tags: , — m759 @ 5:48 pm

(Continued from February 19)

The cover of the April 1, 1970 second edition of The Structure of Scientific Revolutions , by Thomas S. Kuhn—

http://www.log24.com/log/pix11/110310-KuhnCover.jpg

This journal on January 19, 2011

IMAGE- A Galois cube: model of the 27-point affine 3-space

If Galois geometry is thought of as a paradigm shift from Euclidean geometry,
both images above— the Kuhn cover and the nine-point affine plane—
may be viewed, taken together, as illustrating the shift. The nine subcubes
of the Euclidean  3x3x3 cube on the Kuhn cover do not  form an affine plane
in the coordinate system of the Galois  cube in the second image, but they
at least suggest  such a plane. Similarly, transformations of a
non-mathematical object, the 1974 Rubik  cube, are not Galois  transformations,
but they at least suggest  such transformations.

See also today's online Harvard Crimson  illustration of problems of translation
not unrelated to the problems of commensurability  discussed by Kuhn.

http://www.log24.com/log/pix11/110310-CrimsonSm.jpg

Saturday, February 27, 2010

Cubist Geometries

Filed under: General,Geometry — Tags: , , , — m759 @ 2:01 pm

"The cube has…13 axes of symmetry:
  6 C2 (axes joining midpoints of opposite edges),
4 C3 (space diagonals), and
3C4 (axes joining opposite face centroids)."
–Wolfram MathWorld article on the cube

These 13 symmetry axes can be used to illustrate the interplay between Euclidean and Galois geometry in a cubic model of the 13-point Galois plane.

The geometer's 3×3×3 cube–
27 separate subcubes unconnected
by any Rubik-like mechanism–

The 3x3x3 geometer's cube, with coordinates

The 13 symmetry axes of the (Euclidean) cube–
exactly one axis for each pair of opposite
  subcubes in the (Galois) 3×3×3 cube–

The 13 symmetry axes of the cube

A closely related structure–
the finite projective plane
with 13 points and 13 lines–

Oxley's 2004 drawing of the 13-point projective plane

A later version of the 13-point plane
by Ed Pegg Jr.–

Ed Pegg Jr.'s 2007 drawing of the 13-point projective plane

A group action on the 3×3×3 cube
as illustrated by a Wolfram program
by Ed Pegg Jr. (undated, but closely
related to a March 26, 1985 note
by Steven H. Cullinane)–

Ed Pegg Jr.'s program at Wolfram demonstrating concepts of a 1985 note by Cullinane

The above images tell a story of sorts.
The moral of the story–

Galois projective geometries can be viewed
in the context of the larger affine geometries
from which they are derived.

The standard definition of points in a Galois projective plane is that they are lines through the (arbitrarily chosen) origin in a corresponding affine 3-space converted to a vector 3-space.

If we choose the origin as the center cube in coordinatizing the 3×3×3 cube (See Weyl's relativity problem ), then the cube's 13 axes of symmetry can, if the other 26 cubes have properly (Weyl's "objectively") chosen coordinates, illustrate nicely the 13 projective points derived from the 27 affine points in the cube model.

The 13 lines of the resulting Galois projective plane may be derived from Euclidean planes  through the cube's center point that are perpendicular to the cube's 13 Euclidean symmetry axes.

The above standard definition of points in a Galois projective plane may of course also be used in a simpler structure– the eightfold cube.

(The eightfold cube also allows a less standard way to picture projective points that is related to the symmetries of "diamond" patterns formed by group actions on graphic designs.)

See also Ed Pegg Jr. on finite geometry on May 30, 2006
at the Mathematical Association of America.

Powered by WordPress