Friday, January 5, 2018

Types of Ambiguity

Filed under: General,Geometry — Tags: , — m759 @ 2:56 AM

From "The Principle of Sufficient Reason," by George David Birkhoff
in "Three Public Lectures on Scientific Subjects,"
delivered at the Rice Institute, March 6, 7, and 8, 1940 —

From the same lecture —

Up to the present point my aim has been to consider a variety of applications of the Principle of Sufficient Reason, without attempting any precise formulation of the Principle itself. With these applications in mind I will venture to formulate the Principle and a related Heuristic Conjecture in quasi-mathematical form as follows:

PRINCIPLE OF SUFFICIENT REASON. If there appears in any theory T a set of ambiguously  determined ( i e . symmetrically entering) variables, then these variables can themselves be determined only to the extent allowed by the corresponding group G. Consequently any problem concerning these variables which has a uniquely determined solution, must itself be formulated so as to be unchanged by the operations of the group G ( i e . must involve the variables symmetrically).

HEURISTIC CONJECTURE. The final form of any scientific theory T is: (1) based on a few simple postulates; and (2) contains an extensive ambiguity, associated symmetry, and underlying group G, in such wise that, if the language and laws of the theory of groups be taken for granted, the whole theory T appears as nearly self-evident in virtue of the above Principle.

The Principle of Sufficient Reason and the Heuristic Conjecture, as just formulated, have the advantage of not involving excessively subjective ideas, while at the same time retaining the essential kernel of the matter.

In my opinion it is essentially this principle and this conjecture which are destined always to operate as the basic criteria for the scientist in extending our knowledge and understanding of the world.

It is also my belief that, in so far as there is anything definite in the realm of Metaphysics, it will consist in further applications of the same general type. This general conclusion may be given the following suggestive symbolic form:

Image-- Birkhoff diagram relating Galois's theory of ambiguity to metaphysics

While the skillful metaphysical use of the Principle must always be regarded as of dubious logical status, nevertheless I believe it will remain the most important weapon of the philosopher.

Related remarks by a founding member of the Metaphysical Club:

See also the previous post, "Seven Types of Interality."

Monday, March 13, 2017

Pragmatism at the Church of the Transformers*

Filed under: General — Tags: — m759 @ 9:17 PM

"I would drop the keystone into my arch . . . ."

Click the Auto Body image for some backstory.

* For the church, see Transformers in this journal.

Sunday, November 27, 2016

A Machine That Will Fit

Filed under: General,Geometry — Tags: , — m759 @ 8:00 AM

Or:  Notes for the Metaphysical Club

Northrop Frye on Wallace Stevens:

"He… stands in contrast to the the dualistic
approach of Eliot, who so often speaks of poetry
as though it were an emotional and sensational
soul looking for a 'correlative' skeleton of
thought to be provided by a philosopher, a
Cartesian ghost trying to find a machine that
will fit."

Ralph Waldo Emerson on "vacant and vain" knowledge:

"The new position of the advancing man has all
the powers of the old, yet has them all new. It
carries in its bosom all the energies of the past,
yet is itself an exhalation of the morning. I cast
away in this new moment all my once hoarded
knowledge, as vacant and vain." 

Harold Bloom on Emerson:

"Emerson may not have invented the American
Sublime, yet he took eternal possession of it." 

Wallace Stevens on the American Sublime:

"And the sublime comes down
To the spirit itself,

The spirit and space,
The empty spirit
In vacant space."

A founding member of the Metaphysical Club:

See also the eightfold cube.

Sunday, September 25, 2016

Introduction to Pragmatism

Filed under: General — Tags: — m759 @ 7:29 AM

Stanford Encyclopedia of Philosophy
on the origins of Pragmatism:

"Pragmatism had been born in the discussions at
a ‘metaphysical club’ in Harvard around 1870
(see Menand…*). Peirce and James participated
in these discussions along with some other philosophers
and philosophically inclined lawyers. As we have
already noted, Peirce developed these ideas in his
publications from the 1870s."

From "How to Make Our Ideas Clear,"
by Charles Sanders Peirce in 1878 —

"The very first lesson that we have a right to demand that logic shall teach us is, how to make our ideas clear; and a most important one it is, depreciated only by minds who stand in need of it. To know what we think, to be masters of our own meaning, will make a solid foundation for great and weighty thought. It is most easily learned by those whose ideas are meagre and restricted; and far happier they than such as wallow helplessly in a rich mud of conceptions. A nation, it is true, may, in the course of generations, overcome the disadvantage of an excessive wealth of language and its natural concomitant, a vast, unfathomable deep of ideas. We may see it in history, slowly perfecting its literary forms, sloughing at length its metaphysics, and, by virtue of the untirable patience which is often a compensation, attaining great excellence in every branch of mental acquirement. The page of history is not yet unrolled which is to tell us whether such a people will or will not in the long-run prevail over one whose ideas (like the words of their language) are few, but which possesses a wonderful mastery over those which it has. For an individual, however, there can be no question that a few clear ideas are worth more than many confused ones. A young man would hardly be persuaded to sacrifice the greater part of his thoughts to save the rest; and the muddled head is the least apt to see the necessity of such a sacrifice. Him we can usually only commiserate, as a person with a congenital defect. Time will help him, but intellectual maturity with regard to clearness comes rather late, an unfortunate arrangement of Nature, inasmuch as clearness is of less use to a man settled in life, whose errors have in great measure had their effect, than it would be to one whose path lies before him. It is terrible to see how a single unclear idea, a single formula without meaning, lurking in a young man's head, will sometimes act like an obstruction of inert matter in an artery, hindering the nutrition of the brain, and condemning its victim to pine away in the fullness of his intellectual vigor and in the midst of intellectual plenty. Many a man has cherished for years as his hobby some vague shadow of an idea, too meaningless to be positively false; he has, nevertheless, passionately loved it, has made it his companion by day and by night, and has given to it his strength and his life, leaving all other occupations for its sake, and in short has lived with it and for it, until it has become, as it were, flesh of his flesh and bone of his bone; and then he has waked up some bright morning to find it gone, clean vanished away like the beautiful Melusina of the fable, and the essence of his life gone with it. I have myself known such a man; and who can tell how many histories of circle-squarers, metaphysicians, astrologers, and what not, may not be told in the old German story?"

Peirce himself may or may not have been entirely successful
in making his ideas clear.  See Where Credit Is Due  (Log24, 
June 11, 2016) and the Wikipedia article Categories (Peirce).

* Menand, L., 2001. The Metaphysical Club A Story of
Ideas in America
, New York:  Farrar, Straus and Giroux

Saturday, June 11, 2016

Where Credit Is Due

Filed under: General — Tags: — m759 @ 4:16 AM

"White is credited with broadening the scope of
topics traditionally studied by philosophers…."

Monday, April 25, 2016

Peirce’s Accounts of the Universe

Filed under: General,Geometry — m759 @ 8:19 PM

Compare and contrast Peirce's seven systems of metaphysics with
the seven projective points in a post of March 1, 2010 —

Wikipedia article 'Group theory' with Rubik Cube and quote from Nathan Carter-- 'What is symmetry?'

From my commentary on Carter's question —

Labelings of the eightfold cube

Powered by WordPress