Log24

Tuesday, March 30, 2010

Lie Groups for Holy Week

Filed under: General,Geometry — Tags: — m759 @ 1:01 pm

Great line reading in 'Angels and Demons'- 'The God PARTICLE?'

Deep Down Things: The Breathtaking Beauty of Particle Physics, by Bruce A. Schumm, Johns Hopkins University Press, hardcover, Oct. 20, 2004, pp. 94-95–

"In the early 1960s, a physicist at the California Institute of Technology by the name of Murray Gell-Mann interpreted the patterns observed in the emerging array of elementary particles as being due to a symmetry….

Gell-Mann's eightfold way was perhaps the first conscious application of the results of the pure mathematical field of group theory and, in particular, the theory of 'Lie groups,' to a problem in physics."

From the preface–

"I didn't come up with the title for this book. For that, I can thank the people at the Johns Hopkins University Press…. my only reservation about the title is that… it implies a degree of literacy to which I can't lay claim."

Amen.

Remedial reading for those who might have fallen for Schumm's damned nonsense–

 "Quantum Mechanics and Group Theory I," by Dallas C. Kennedy

Group Theory and Physics, by Shlomo Sternberg

Sunday, December 17, 2023

Scholastic Stochastic

Filed under: General — Tags: — m759 @ 1:14 pm

"Let G be the group generatied by arbitrarily  mixing random
permutations of rows and of columns with random  permutations
of the four 2×2 quadrants…. G is isomorphic to the affine group
on V (GF(2))." — Steven H. Cullinane, October 1978.

Compare and contrast with another discussion of randomness and
affine groups, from American Mathematical Monthly, November 1995 —

Related material not cited by Poole in 1995 —

J. E. Johnson, "Markov-type Lie groups in GL(n, R),"
J. Math. Phys. 26, 252-257 (1985).

The above Johnson citation is from an article that also discusses
the work of Poole —

Irene Paniello, "On Actions on Cubic Stochastic Matrices,"
arXiv preprint dated April 22, 2017. Published in
Markov Processes and Related Fields, 2017, v.23, Issue 2, 325-348.

Thursday, December 4, 2014

Followup for Josefine

Filed under: General — Tags: — m759 @ 11:11 am

The title refers to the previous post, "Follow This."

Dialogue from "Night at the Museum 3"—

"He's not in charge, we're just following him."
"That's what being in charge means ." 

See also Smoke and Mirrors and Angels & Demons.

From Lie Groups for Holy Week :

Stellan Skarsgaard as the head of Vatican Security —

Great line reading in 'Angels and Demons'- 'The God PARTICLE?'

Wednesday, October 1, 2014

Mathematics for Tromsø

Filed under: General,Geometry — m759 @ 9:45 am

Loren Olson, Harvard ’64, a professor of mathematics
at Norway’s Tromsø University,* died June 22, 2014.

In his memory, a search in this journal for Lie Group.

That search yields a post titled Lie Groups for Holy Week (March 30, 2010).

A quotation related to that post:

* The city of Tromsø hosted some art related to group theory in 2010.
Neither that art nor my own related remarks on group theory are very
relevant to physics (yet).

Tuesday, September 9, 2014

In Memoriam

Filed under: General — Tags: , , — m759 @ 12:00 pm

For Loren D. Olson, Harvard '64:

"Even 50 years later, I remember his enthusiasm for a very young
and very gifted Harvard professor named Shlomo Sternberg, one
of whose special areas of interest was Lie groups. I still have no real
understanding of what a Lie group is, but not for want of trying on
Loren’s part. Loren was also quite interested in the thinking of the
theologians Paul Tillich and Reinhold Niebuhr, who were then at
Harvard. He attended some of their lectures, read several of their
books, and enjoyed discussing their ideas."

Harvard classmate David Jackson

See also today's previous post.

Saturday, February 18, 2012

Symmetry

Filed under: General,Geometry — m759 @ 7:35 pm

From the current Wikipedia article "Symmetry (physics)"—

"In physics, symmetry includes all features of a physical system that exhibit the property of symmetry—that is, under certain transformations, aspects of these systems are 'unchanged', according to a particular observation. A symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is 'preserved' under some change.

A family of particular transformations may be continuous  (such as rotation of a circle) or discrete  (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by Lie groups while discrete symmetries are described by finite groups (see Symmetry group)."….

"A discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance."

Note the confusion here between continuous (or discontinuous) transformations  and "continuous" (or "discontinuous," i.e. "discrete") groups .

This confusion may impede efforts to think clearly about some pure mathematics related to current physics— in particular, about the geometry of spaces made up of individual units ("points") that are not joined together in a continuous manifold.

For an attempt to forestall such confusion, see Noncontinuous Groups.

For related material, see Erlanger and Galois as well as the opening paragraphs of Diamond Theory

Symmetry is often described as invariance under a group of transformations. An unspoken assumption about symmetry in Euclidean 3-space is that the transformations involved are continuous.

Diamond theory rejects this assumption, and in so doing reveals that Euclidean symmetry may itself  be invariant under rather interesting groups of non-continuous (and a-symmetric) transformations. (These might be called noncontinuous  groups, as opposed to so-called discontinuous  (or discrete ) symmetry groups. See Weyl's Symmetry .)

For example, the affine group A on the 4-space over the 2-element field has a natural noncontinuous and asymmetric but symmetry-preserving action on the elements of a 4×4 array. (Details)

(Version first archived on March 27, 2002)

Update of Sunday, February 19, 2012—

The abuse of language by the anonymous authors
of the above Wikipedia article occurs also in more
reputable sources. For instance—

IMAGE- Brading and Castellani, 'Symmetries in Physics'- Four main sections include 'Continuous Symmetries' and 'Discrete Symmetries.'

Some transformations referred to by Brading and Castellani
and their editees as "discrete symmetries" are, in fact, as
linear transformations of continuous spaces, themselves
continuous  transformations.

This unfortunate abuse of language is at least made explicit
in a 2003 text, Mathematical Perspectives on Theoretical
Physics 
(Nirmala Prakash, Imperial College Press)—

"… associated[*] with any given symmetry there always exists
a continuous or a discrete group of transformations….
A symmetry whose associated group is continuous (discrete)
is called a continuous  (discrete ) symmetry ." — Pp. 235, 236

[* Associated how?]

Thursday, April 28, 2011

Crimson Tide…

Filed under: General — Tags: — m759 @ 3:59 pm

A sequel to Wednesday afternoon's post on The Harvard Crimson ,
Atlas Shrugged (illustrated below) —

http://www.log24.com/log/pix11A/110427-CrimsonAtlas500w.jpg

Related material found today in Wikipedia—

A defense of Rubik by 'Pazouzou'

See also Savage Logic (Oct. 19, 2010), as well as
Stellan Skarsgård in Lie Groups for Holy Week (March 30, 2010)
and in Exorcist: The Beginning (2004).

Monday, April 25, 2011

Poetry and Physics

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

One approach to the storied philosophers' stone, that of Jim Dodge in Stone Junction , was sketched in yesterday's Easter post. Dodge described a mystical "spherical diamond." The symmetries of the sphere form what is called in mathematics a Lie group . The "spherical" of Dodge therefore suggests a review of the Lie group Ein Garrett Lisi's poetic theory of everything.

A check of the Wikipedia article on Lisi's theory yields…

http://www.log24.com/log/pix11A/110425-WikipediaE8.jpg

       Diamond and E8 at Wikipedia

Related material — Eas "a diamond with thousands of facets"—

http://www.log24.com/log/pix11A/110425-Kostant.jpg

Also from the New Yorker  article

“There’s a dream that underlying the physical universe is some beautiful mathematical structure, and that the job of physics is to discover that,” Smolin told me later. “The dream is in bad shape,” he added. “And it’s a dream that most of us are like recovering alcoholics from.” Lisi’s talk, he said, “was like being offered a drink.”

A simpler theory of everything was offered by Plato. See, in the Timaeus , the Platonic solids—

Platonic solids' symmetry groups

Figure from this journal on August 19th, 2008.
See also July 19th, 2008.

It’s all in Plato, all in Plato:
bless me, what do  they
teach them at these schools!”
— C. S. Lewis

Wednesday, August 19, 2009

Wednesday August 19, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 10:30 am

Group Actions, 1984-2009

From a 1984 book review:

"After three decades of intensive research by hundreds of group theorists, the century old problem of the classification of the finite simple groups has been solved and the whole field has been drastically changed. A few years ago the one focus of attention was the program for the classification; now there are many active areas including the study of the connections between groups and geometries, sporadic groups and, especially, the representation theory. A spate of books on finite groups, of different breadths and on a variety of topics, has appeared, and it is a good time for this to happen. Moreover, the classification means that the view of the subject is quite different; even the most elementary treatment of groups should be modified, as we now know that all finite groups are made up of groups which, for the most part, are imitations of Lie groups using finite fields instead of the reals and complexes. The typical example of a finite group is GL(n, q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled."

— Jonathan L. Alperin,
   review of books on group theory,
   Bulletin (New Series) of the American
   Mathematical Society
10 (1984) 121, doi:
   10.1090/S0273-0979-1984-15210-8
 

A more specific example:


Actions of GL(2,3) on a 3x3 coordinate-array

The same example
at Wolfram.com:

Ed Pegg Jr.'s program at Wolfram.com to display a large number of actions of small linear groups over finite fields

Caption from Wolfram.com:
 
"The two-dimensional space Z3×Z3 contains nine points: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). The 48 invertible 2×2 matrices over Z3 form the general linear group known as GL(2, 3). They act on Z3×Z3 by matrix multiplication modulo 3, permuting the nine points. More generally, GL(n, p) is the set of invertible n×n matrices over the field Zp, where p is prime. With (0, 0) shifted to the center, the matrix actions on the nine points make symmetrical patterns."

Citation data from Wolfram.com:

"GL(2,p) and GL(3,3) Acting on Points"
 from The Wolfram Demonstrations Project,
 http://demonstrations.wolfram.com/GL2PAndGL33ActingOnPoints/,
 Contributed by: Ed Pegg Jr"

As well as displaying Cullinane's 48 pictures of group actions from 1985, the Pegg program displays many, many more actions of small finite general linear groups over finite fields. It illustrates Cullinane's 1985 statement:

"Actions of GL(2,p) on a p×p coordinate-array have the same sorts of symmetries, where p is any odd prime."

Pegg's program also illustrates actions on a cubical array– a 3×3×3 array acted on by GL(3,3). For some other actions on cubical arrays, see Cullinane's Finite Geometry of the Square and Cube.
 

Wednesday, July 30, 2008

Wednesday July 30, 2008

Filed under: General,Geometry — Tags: — m759 @ 11:48 am
Theories of Everything

Ashay Dharwadker now has a Theory of Everything.
Like Garrett Lisi’s, it is based on an unusual and highly symmetric mathematical structure. Lisi’s approach is related to the exceptional simple Lie group E8.* Dharwadker uses a structure long associated with the sporadic simple Mathieu group M24.

GRAND UNIFICATION

OF THE STANDARD MODEL WITH QUANTUM GRAVITY

by Ashay Dharwadker

Abstract

“We show that the mathematical proof of the four colour theorem [1] directly implies the existence of the standard model, together with quantum gravity, in its physical interpretation. Conversely, the experimentally observable standard model and quantum gravity show that nature applies the mathematical proof of the four colour theorem, at the most fundamental level. We preserve all the established working theories of physics: Quantum Mechanics, Special and General Relativity, Quantum Electrodynamics (QED), the Electroweak model and Quantum Chromodynamics (QCD). We build upon these theories, unifying all of them with Einstein’s law of gravity. Quantum gravity is a direct and unavoidable consequence of the theory. The main construction of the Steiner system in the proof of the four colour theorem already defines the gravitational fields of all the particles of the standard model. Our first goal is to construct all the particles constituting the classic standard model, in exact agreement with t’Hooft’s table [8]. We are able to predict the exact mass of the Higgs particle and the CP violation and mixing angle of weak interactions. Our second goal is to construct the gauge groups and explicitly calculate the gauge coupling constants of the force fields. We show how the gauge groups are embedded in a sequence along the cosmological timeline in the grand unification. Finally, we calculate the mass ratios of the particles of the standard model. Thus, the mathematical proof of the four colour theorem shows that the grand unification of the standard model with quantum gravity is complete, and rules out the possibility of finding any other kinds of particles.”

* See, for instance, “The Scientific Promise of Perfect Symmetry” in The New York Times of March 20, 2007.

Powered by WordPress