Log24

Thursday, September 22, 2011

Sicilian Reflections

Filed under: General,Geometry — Tags: , — m759 @ 3:33 PM

http://www.log24.com/log/pix11B/110922-Weyl-Palermo.gif

Related material—

http://www.log24.com/log/pix11B/110922-TriquetrumCube.jpg

See also yesterday's Symmetric Generation.

Wednesday, September 21, 2011

Symmetric Generation

Filed under: General,Geometry — Tags: , , — m759 @ 2:00 PM

Suggested by yesterday's Relativity Problem Revisited and by Cassirer on Objectivity

From Symmetric Generation of Groups , by R.T. Curtis (Cambridge U. Press, 2007)—

"… we are saying much more than that G M 24 is generated by
some set of seven involutions, which would be a very weak
requirement. We are asserting that M 24 is generated by a set
of seven involutions which possesses all the symmetries of L3(2)
acting on the points of the 7-point projective plane…."
Symmetric Generation , p. 41

"It turns out that this approach is particularly revealing and that
many simple groups, both sporadic and classical, have surprisingly
simple definitions of this type."
Symmetric Generation , p. 42

See also (click to enlarge)—

http://www.log24.com/log/pix11B/110921-CassirerOnObjectivity-400w.jpg

Cassirer's remarks connect the concept of objectivity  with that of object .

The above quotations perhaps indicate how the Mathieu group M 24 may be viewed as an object.

"This is the moment which I call epiphany. First we recognise that the object is one  integral thing, then we recognise that it is an organised composite structure, a thing  in fact: finally, when the relation of the parts is exquisite, when the parts are adjusted to the special point, we recognise that it is that  thing which it is. Its soul, its whatness, leaps to us from the vestment of its appearance. The soul of the commonest object, the structure of which is so adjusted, seems to us radiant. The object achieves its epiphany."

— James Joyce, Stephen Hero

For a simpler object "which possesses all the symmetries of L3(2) acting on the points of the 7-point projective plane…." see The Eightfold Cube.

For symmetric generation of L3(2) on that cube, see A Simple Reflection Group of Order 168.

Powered by WordPress