Log24

Monday, February 25, 2019

The Sartwell Illusion

Filed under: General — Tags: — m759 @ 2:56 pm

See Sartwell in this journal and . . .

"Read something that means something." — New Yorker  motto.

From a search for Alperin in this  journal —

http://www.log24.com/log/pix18/180824-Alperin-Groups_and_Representations-1995-p61-Further_Exercises.jpg

Why PSL(2,7) is isomorphic to GL(3.2)

Saturday, November 17, 2018

Representation

Filed under: General,Geometry — Tags: — m759 @ 7:00 am

See as well . . .

. . . and posts tagged Alperin.

On its current homepage, the American Mathematical Society  
links to a Nov. 15 blog post illustrating the Stan Lee approach
to mathematics:

Stories: "Math needs more stories. All kinds of stories…" 

See too Mathematics and Narrative in this  journal.

Saturday, August 25, 2018

Point at Infinity

Filed under: General,Geometry — Tags: , — m759 @ 5:20 am

In literature —

http://www.log24.com/log/pix18/180825-Point_Omega-cover.jpg

In film —

http://www.log24.com/log/pix18/180825-Borrego-script-Instagram-foto-only-500w.jpg

In mathematics —

http://www.log24.com/log/pix18/180824-Alperin-Groups_and_Representations-1995-p61-Further_Exercises.jpg

Thursday, August 16, 2018

Mathematics and Narrative

Filed under: General,Geometry — Tags: — m759 @ 11:00 pm

(Continued)

Mathematics:

Alperin, Groups and Representations, p. 61

Narrative:

The Tale of the Flux Capacitor

Wednesday, August 15, 2018

An Illusion of Brilliance

Filed under: General,Geometry — Tags: , , — m759 @ 5:25 pm

” . . . the 3 by 3, the six-sided, three-layer configuration of
the original Rubik’s Cube, which bestows an illusion of brilliance
on those who can solve it.”

— John Branch in the online New York Times  today,
“Children of the Cube”:

https://www.nytimes.com/2018/08/15/sports/
cubing-usa-nationals-max-park.html

Cube-solving, like other sports, allows for displays of
impressive and admirable skill, if not “brilliance.”

The mathematics — group theory — that is sometimes associated
with Rubik’s Cube is, however, not  a sport.  See Rubik + Group
in this journal.

http://www.log24.com/log/pix18/180815-Alperin-Bell-preface-1995.gif

Wednesday, August 19, 2009

Wednesday August 19, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 10:30 am

Group Actions, 1984-2009

From a 1984 book review:

"After three decades of intensive research by hundreds of group theorists, the century old problem of the classification of the finite simple groups has been solved and the whole field has been drastically changed. A few years ago the one focus of attention was the program for the classification; now there are many active areas including the study of the connections between groups and geometries, sporadic groups and, especially, the representation theory. A spate of books on finite groups, of different breadths and on a variety of topics, has appeared, and it is a good time for this to happen. Moreover, the classification means that the view of the subject is quite different; even the most elementary treatment of groups should be modified, as we now know that all finite groups are made up of groups which, for the most part, are imitations of Lie groups using finite fields instead of the reals and complexes. The typical example of a finite group is GL(n, q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled."

— Jonathan L. Alperin,
   review of books on group theory,
   Bulletin (New Series) of the American
   Mathematical Society
10 (1984) 121, doi:
   10.1090/S0273-0979-1984-15210-8
 

A more specific example:


Actions of GL(2,3) on a 3x3 coordinate-array

The same example
at Wolfram.com:

Ed Pegg Jr.'s program at Wolfram.com to display a large number of actions of small linear groups over finite fields

Caption from Wolfram.com:
 
"The two-dimensional space Z3×Z3 contains nine points: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). The 48 invertible 2×2 matrices over Z3 form the general linear group known as GL(2, 3). They act on Z3×Z3 by matrix multiplication modulo 3, permuting the nine points. More generally, GL(n, p) is the set of invertible n×n matrices over the field Zp, where p is prime. With (0, 0) shifted to the center, the matrix actions on the nine points make symmetrical patterns."

Citation data from Wolfram.com:

"GL(2,p) and GL(3,3) Acting on Points"
 from The Wolfram Demonstrations Project,
 http://demonstrations.wolfram.com/GL2PAndGL33ActingOnPoints/,
 Contributed by: Ed Pegg Jr"

As well as displaying Cullinane's 48 pictures of group actions from 1985, the Pegg program displays many, many more actions of small finite general linear groups over finite fields. It illustrates Cullinane's 1985 statement:

"Actions of GL(2,p) on a p×p coordinate-array have the same sorts of symmetries, where p is any odd prime."

Pegg's program also illustrates actions on a cubical array– a 3×3×3 array acted on by GL(3,3). For some other actions on cubical arrays, see Cullinane's Finite Geometry of the Square and Cube.
 

Saturday, August 6, 2005

Saturday August 6, 2005

Filed under: General,Geometry — Tags: , — m759 @ 9:00 am
For André Weil on
the seventh anniversary
of his death:

 A Miniature
Rosetta Stone

The image “http://www.log24.com/log/pix05B/grid3x3med.bmp” cannot be displayed, because it contains errors.

In a 1940 letter to his sister Simone,  André Weil discussed a sort of “Rosetta stone,” or trilingual text of three analogous parts: classical analysis on the complex field, algebraic geometry over finite fields, and the theory of number fields.  

John Baez discussed (Sept. 6, 2003) the analogies of Weil, and he himself furnished another such Rosetta stone on a much smaller scale:

“… a 24-element group called the ‘binary tetrahedral group,’ a 24-element group called ‘SL(2,Z/3),’ and the vertices of a regular polytope in 4 dimensions called the ’24-cell.’ The most important fact is that these are all the same thing!”

For further details, see Wikipedia on the 24-cell, on special linear groups, and on Hurwitz quaternions,

The group SL(2,Z/3), also known as “SL(2,3),” is of course derived from the general linear group GL(2,3).  For the relationship of this group to the quaternions, see the Log24 entry for August 4 (the birthdate of the discoverer of quaternions, Sir William Rowan Hamilton).

The 3×3 square shown above may, as my August 4 entry indicates, be used to picture the quaternions and, more generally, the 48-element group GL(2,3).  It may therefore be regarded as the structure underlying the miniature Rosetta stone described by Baez.

“The typical example of a finite group is GL(n,q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled.”

 — J. L. Alperin, book review,
    Bulletin (New Series) of the American
    Mathematical Society 10 (1984), 121

Thursday, August 4, 2005

Thursday August 4, 2005

Filed under: General,Geometry — Tags: , — m759 @ 1:00 pm
Visible Mathematics, continued

 

Today's mathematical birthdays:
Saunders Mac Lane, John Venn,
and Sir William Rowan Hamilton.

It is well known that the quaternion group is a subgroup of GL(2,3), the general linear group on the 2-space over GF(3), the 3-element Galois field.

The figures below illustrate this fact.

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

 

Related material: Visualizing GL(2,p)

"The typical example of a finite group is GL(n,q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled."

 

 — J. L. Alperin, book review,
    Bulletin (New Series) of the American
    Mathematical Society 10 (1984), 121

 

Powered by WordPress