Log24

Wednesday, February 15, 2023

Mathematics and Narrative . . .

Filed under: General — Tags: — m759 @ 3:47 pm

Continues.
 

Mathematics:

From Log24 "Pyramid Game" posts —

The letter labels, but not the tetrahedron, are from Whitehead’s
The Axioms of Projective Geometry  (Cambridge U. Press, 1906), page 13.
 

Narrative:

Thursday, May 9, 2013

Mathematics and Narrative (continued)

Filed under: General — m759 @ 7:00 pm

"Why history?
Well, the essence of history  is story ,
and a good story is an end in itself."

— Barry Mazur, "History of Mathematics  as a tool,"
    February 17, 2013

This  journal on February 17, 2013:

FROM Christoph Waltz

Filed under: Uncategorized — m759 @ 12:12 AM 

"Currently in post-production": The Zero Theorem.

For Christoph Waltz

Filed under: Uncategorized — m759 @ 12:00 AM 

Raiders of the Lost Tesseract  continues…

SOCRATES: Is he not better off in knowing his ignorance?
MENO: I think that he is.
SOCRATES: If we have made him doubt, and given him the 'torpedo's shock,' have we done him any harm?
MENO: I think not.

Torpedo… LOS!

IMAGE- Theodore Sturgeon, 1972 reviews of Del Rey's 'Pstalemate' and Le Guin's 'Lathe of Heaven'   

See also today's previous post.

Monday, March 8, 2010

Mathematics and Narrative continued

Filed under: General — m759 @ 9:29 am

The Magic Lyre


NY Times epiphany, morning of March 8, 2010

(Click image for context.)

See also Saturday's post

Lyre illustrating a review of the novel 'Angelology' by Danielle Trussoni

as well as Solemn Dance
   and Mazur at Delphi.

(This last is apparently based on
a talk given by Barry Mazur at Delphi
in 2007 and may or may not appear in
a book, Mathematics and Narrative,
to be published in 2010.)

Suggested tune for the lyre–

"Send me the pillow
  that you dream on,"

in memory of Hank Locklin,
who died on this date last year.
 

Thursday, February 23, 2017

Bullshit Studies

Filed under: General — Tags: , — m759 @ 1:21 pm

Continued.

" The origin of new ways of doing things may often be
a disciplinary crisis. The definition of such a crisis
provided by Barry Mazur in Mykonos (2005) applies
equally well to literary creation. '[A crisis occurs] when
some established overarching framework, theoretical
vocabulary or procedure of thought is perceived as
inadequate in an essential way, or not meaning
what we think it means.' "

— Circles Disturbed :
The Interplay of Mathematics and Narrative

Edited by Apostolos Doxiadis & Barry Mazur
Princeton University Press, 2012. See
Chapter 14, Section 5.1, by Uri Margolin.

See also "overarching" in this journal.

Friday, August 12, 2016

Dustbucket Physics

Filed under: General,Geometry — Tags: — m759 @ 3:00 pm

Peter Galison, a Harvard professor, is a defender of
the Vienna Circle and the religion of Scientism.

From Galison's “Structure of Crystal, Bucket of Dust,” in
Circles Disturbed: The Interplay of Mathematics and Narrative ,
edited by Apostolos Doxiadis and Barry Mazur, pp. 52-78 
(Princeton: Princeton U. Press, 2012) 

Galison's final paragraph —

"Perhaps, then, it should not surprise us too much if,
as Wheeler approaches the beginning-end of all things,
there is a bucket of Borelian dust. Out of this filth,
through the proposition machine of quantum mechanics
comes pregeometry; pregeometry makes geometry;
geometry gives rise to matter and the physical laws
and constants of the universe. At once close to and far
from the crystalline story that Bourbaki invoked,
Wheeler’s genesis puts one in mind of Genesis 3:19:
'In the sweat of thy face shalt thou eat bread, till thou
return unto the ground; for out of it wast thou taken:
for dust thou art, and unto dust shalt thou return.' "

For fans of Scientism who prefer more colorful narratives —

Thursday, April 16, 2015

National Library Week

Filed under: General,Geometry — Tags: , — m759 @ 7:00 pm

"Celebrate National Library Week 2015 (April 12-18, 2015)
with the theme "Unlimited possibilities @ your library®."

See also Library of Hell.

A page from Princeton University Press on March 18, 2012:

IMAGE- 'Circles Disturbed: The Interplay of Mathematics and Narrative,' p. xvi

… "mathematics and narrative…." (top of page xvii).

I prefer the interplay of Euclidean  and Galois  mathematics.

Thursday, February 12, 2015

Dead Reckoning

Filed under: General,Geometry — Tags: , — m759 @ 12:48 pm

Continued from yesterday.

The passage on Claude Chevalley quoted here
yesterday in the post Dead Reckoning was, it turns out,
also quoted by Peter Galison in his essay "Structure of Crystal,
Bucket of Dust" in Circles Disturbed: The Interplay of 
Mathematics and Narrative  
(Princeton University Press, 2012,
ed. by Apostolos Doxiadis and Barry Mazur).

Galison gives a reference to his source:

"From 'Claude Chevalley Described by His Daughter (1988),' 
in Michèle Chouchan, Nicolas Bourbaki: Faits et légendes
(Paris: Éditions du Choix, 1995), 36–40, translated and cited
in Marjorie Senechal, 'The Continuing Silence of Bourbaki:
An Interview with Pierre Cartier, June 18, 1997,' 
Mathematical Intelligencer  1 (1998): 22–28."

Galison's essay compares Chevalley with the physicist
John Archibald Wheeler. His final paragraph —

"Perhaps, then, it should not surprise us too much if,
as Wheeler approaches the beginning-end of all things,
there is a bucket of Borelian dust. Out of this filth,
through the proposition machine of quantum mechanics
comes pregeometry; pregeometry makes geometry;
geometry gives rise to matter and the physical laws
and constants of the universe. At once close to and far
from the crystalline story that Bourbaki invoked,
Wheeler’s genesis puts one in mind of Genesis 3:19:
'In the sweat of thy face shalt thou eat bread, till thou
return unto the ground; for out of it wast thou taken:
for dust thou art, and unto dust shalt thou return.'"

See also posts tagged Wheeler.

Thursday, August 29, 2013

An End in Itself

Filed under: General — m759 @ 3:24 pm

(Mathematics and Narrative, continued from May 9, 2013)

IMAGE- Barry Mazur: 'A good story is an end in itself.'

See also Scriba's The Concept of Number and,
from the date of his death, The Zero Theorem.

Friday, September 2, 2011

Rigged?

Filed under: General,Geometry — m759 @ 1:44 pm

Sarah Tomlin in a Nature  article on the July 12-15 2005 Mykonos meeting on Mathematics and Narrative—

"Today, Mazur says he has woken up to the power of narrative, and in Mykonos gave an example of a 20-year unsolved puzzle in number theory which he described as a cliff-hanger. 'I don’t think I personally understood the problem until I expressed it in narrative terms,' Mazur told the meeting. He argues that similar narrative devices may be especially helpful to young mathematicians…."

Michel Chaouli in "How Interactive Can Fiction Be?" (Critical Inquiry  31, Spring 2005), pages 613-614—

"…a simple thought experiment….*

… If the cliffhanger is done well, it will not simply introduce a wholly unprepared turn into the narrative (a random death, a new character, an entirely unanticipated obstacle) but rather tighten the configuration of known elements to such a degree that the next step appears both inevitable and impossible. We feel the pressure rising to a breaking point, but we simply cannot foresee where the complex narrative structure will give way. This interplay of necessity and contingency produces our anxious— and highly pleasurable— speculation about the future path of the story. But if we could determine that path even slightly, we would narrow the range of possible outcomes and thus the uncertainty in the play of necessity and contingency. The world of the fiction would feel, not open, but rigged."

* The idea of the thought experiment emerged in a conversation with Barry Mazur.

Barry Mazur in the preface to his 2003 book Imagining Numbers

"But the telltale adjective real  suggests two things: that these numbers are somehow real to us and that, in contrast, there are unreal  numbers in the offing. These are the imaginary numbers

The imaginary  numbers are well named, for there is some imaginative work to do to make them as much a part of us as the real numbers we use all the time to measure for bookshelves. 

This book began as a letter to my friend Michel Chaouli. The two of us had been musing about whether or not one could 'feel' the workings of the imagination in its various labors. Michel had also mentioned that he wanted to 'imagine imaginary numbers.' That very (rainy) evening, I tried to work up an explanation of the idea of these numbers, still in the mood of our conversation."

See also The Galois Quaternion and 2/19.

IMAGE- NY Lottery evening numbers Thursday, Sept. 1, 2011 were 144 and 0219

New York Lottery last evening

Thursday, March 19, 2009

Thursday March 19, 2009

Filed under: General,Geometry — m759 @ 11:07 am
Two-Face

The Roman god Janus, from Wikipedia

[Note: Janus is Roman, not Greek, and
the photo is from one “Fubar Obfusco”]

 
The Roman god Janus, from Barry Mazur at Harvard
 Click on image for details.

From January 8:

Religion and Narrative, continued:

A Public Square

In memory of
Richard John Neuhaus,
who died today at 72:

“It seems, as one becomes older,
That the past has another pattern,
   and ceases to be a mere sequence….”

— T. S. Eliot, Four Quartets

A Walsh function and a corresponding finite-geometry hyperplane

Click on image for details.

See also The Folding.

Posted 1/8/2009 7:00 PM

Context:

Notes on Mathematics and Narrative

(entries in chronological order,
March 13 through 19)

Sunday, April 13, 2008

Sunday April 13, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 7:59 am
The Echo
in Plato’s Cave

“It is said that the students of medieval Paris came to blows in the streets over the question of universals. The stakes are high, for at issue is our whole conception of our ability to describe the world truly or falsely, and the objectivity of any opinions we frame to ourselves. It is arguable that this is always the deepest, most profound problem of philosophy.”

— Simon Blackburn, Think (Oxford, 1999)

Michael Harris, mathematician at the University of Paris:

“… three ‘parts’ of tragedy identified by Aristotle that transpose to fiction of all types– plot (mythos), character (ethos), and ‘thought’ (dianoia)….”

— paper (pdf) to appear in Mathematics and Narrative, A. Doxiadis and B. Mazur, eds.

Mythos —

A visitor from France this morning viewed the entry of Jan. 23, 2006: “In Defense of Hilbert (On His Birthday).” That entry concerns a remark of Michael Harris.

A check of Harris’s website reveals a new article:

“Do Androids Prove Theorems in Their Sleep?” (slighly longer version of article to appear in Mathematics and Narrative, A. Doxiadis and B. Mazur, eds.) (pdf).

From that article:

“The word ‘key’ functions here to structure the reading of the article, to draw the reader’s attention initially to the element of the proof the author considers most important. Compare E.M. Forster in Aspects of the Novel:

[plot is] something which is measured not be minutes or hours, but by intensity, so that when we look at our past it does not stretch back evenly but piles up into a few notable pinnacles.”

Ethos —

“Forster took pains to widen and deepen the enigmatic character of his novel, to make it a puzzle insoluble within its own terms, or without. Early drafts of A Passage to India reveal a number of false starts. Forster repeatedly revised drafts of chapters thirteen through sixteen, which comprise the crux of the novel, the visit to the Marabar Caves. When he began writing the novel, his intention was to make the cave scene central and significant, but he did not yet know how:

When I began a A Passage to India, I knew something important happened in the Malabar (sic) Caves, and that it would have a central place in the novel– but I didn’t know what it would be… The Malabar Caves represented an area in which concentration can take place. They were to engender an event like an egg.”

E. M. Forster: A Passage to India, by Betty Jay

Dianoia —

Flagrant Triviality
or Resplendent Trinity?

“Despite the flagrant triviality of the proof… this result is the key point in the paper.”

— Michael Harris, op. cit., quoting a mathematical paper

Online Etymology Dictionary
:

flagrant
c.1500, “resplendent,” from L. flagrantem (nom. flagrans) “burning,” prp. of flagrare “to burn,” from L. root *flag-, corresponding to PIE *bhleg (cf. Gk. phlegein “to burn, scorch,” O.E. blæc “black”). Sense of “glaringly offensive” first recorded 1706, probably from common legalese phrase in flagrante delicto “red-handed,” lit. “with the crime still blazing.”

A related use of “resplendent”– applied to a Trinity, not a triviality– appears in the Liturgy of Malabar:

http://www.log24.com/log/pix08/080413-LiturgyOfMalabar.jpg

The Liturgies of SS. Mark, James, Clement, Chrysostom, and Basil, and the Church of Malabar, by the Rev. J.M. Neale and the Rev. R.F. Littledale, reprinted by Gorgias Press, 2002

On Universals and
A Passage to India:

 

“”The universe, then, is less intimation than cipher: a mask rather than a revelation in the romantic sense. Does love meet with love? Do we receive but what we give? The answer is surely a paradox, the paradox that there are Platonic universals beyond, but that the glass is too dark to see them. Is there a light beyond the glass, or is it a mirror only to the self? The Platonic cave is even darker than Plato made it, for it introduces the echo, and so leaves us back in the world of men, which does not carry total meaning, is just a story of events.”

 

— Betty Jay,  op. cit.

 

http://www.log24.com/log/pix08/080413-Marabar.jpg

Judy Davis in the Marabar Caves

In mathematics
(as opposed to narrative),
somewhere between
a flagrant triviality and
a resplendent Trinity we
have what might be called
“a resplendent triviality.”

For further details, see
A Four-Color Theorem.”

Sunday, March 12, 2006

Sunday March 12, 2006

Filed under: General,Geometry — Tags: , — m759 @ 1:00 pm

A Circle of Quiet

From the Harvard Math Table page:

“No Math table this week. We will reconvene next week on March 14 for a special Pi Day talk by Paul Bamberg.”

The image “http://www.log24.com/log/pix06/060312-PaulBamberg21.jpg” cannot be displayed, because it contains errors.

Paul Bamberg

Transcript of the movie “Proof”–

Some friends of mine are in this band.
They’re playing in a bar on Diversey,
way down the bill, around…

I said I’d be there.

Great.
They’re all in the math department.
They’re good.
They have this song called “i.”
You’d like it. Lowercase i.
They just stand there.
They don’t play anything for three minutes.

Imaginary number?

It’s a math joke.
You see why they’re way down the bill.

From the April 2006 Notices of the American Mathematical Society, a footnote in a review by Juliette Kennedy (pdf) of Rebecca Goldstein’s Incompleteness:

4 There is a growing literature in the area of postmodern commentaries of [sic] Gödel’s theorems. For example, Régis Debray has used Gödel’s theorems to demonstrate the logical inconsistency of self-government. For a critical view of this and related developments, see Bricmont and Sokal’s Fashionable Nonsense [13]. For a more positive view see Michael Harris’s review of the latter, “I know what you mean!” [9]….

[9] MICHAEL HARRIS, “I know what you mean!,” http://www.math.jussieu.fr/~harris/Iknow.pdf.
[13] ALAN SOKAL and JEAN BRICMONT, Fashionable Nonsense, Picador, 1999.

Following the trail marked by Ms. Kennedy, we find the following in Harris’s paper:

“Their [Sokal’s and Bricmont’s] philosophy of mathematics, for instance, is summarized in the sentence ‘A mathematical constant like The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. doesn’t change, even if the idea one has about it may change.’ ( p. 263). This claim, referring to a ‘crescendo of absurdity’ in Sokal’s original hoax in Social Text, is criticized by anthropologist Joan Fujimura, in an article translated for IS*. Most of Fujimura’s article consists of an astonishingly bland account of the history of non-euclidean geometry, in which she points out that the ratio of the circumference to the diameter depends on the metric. Sokal and Bricmont know this, and Fujimura’s remarks are about as helpful as FN’s** referral of Quine’s readers to Hume (p. 70). Anyway, Sokal explicitly referred to “Euclid’s pi”, presumably to avoid trivial objections like Fujimura’s — wasted effort on both sides.32 If one insists on making trivial objections, one might recall that the theorem
that p is transcendental can be stated as follows: the homomorphism Q[X] –> R taking X to The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. is injective.  In other words, The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. can be identified algebraically with X, the variable par excellence.33

The image “http://www.log24.com/log/pix06/060312-X.jpg” cannot be displayed, because it contains errors.

More interestingly, one can ask what kind of object The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. was before the formal definition of real numbers. To assume the real numbers were there all along, waiting to be defined, is to adhere to a form of Platonism.34  Dedekind wouldn’t have agreed.35  In a debate marked by the accusation that postmodern writers deny the reality of the external world, it is a peculiar move, to say the least, to make mathematical Platonism a litmus test for rationality.36 Not that it makes any more sense simply to declare Platonism out of bounds, like Lévy-Leblond, who calls Stephen Weinberg’s gloss on Sokal’s comment ‘une absurdité, tant il est clair que la signification d’un concept quelconque est évidemment affectée par sa mise en oeuvre dans un contexte nouveau!’37 Now I find it hard to defend Platonism with a straight face, and I prefer to regard the formula

The image “http://www.log24.com/log/pix06/060312-pi.jpg” cannot be displayed, because it contains errors.

as a creation rather than a discovery. But Platonism does correspond to the familiar experience that there is something about mathematics, and not just about other mathematicians, that precisely doesn’t let us get away with saying ‘évidemment’!38

32 There are many circles in Euclid, but no pi, so I can’t think of any other reason for Sokal to have written ‘Euclid’s pi,’ unless this anachronism was an intentional part of the hoax.  Sokal’s full quotation was ‘the The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. of Euclid and the G of Newton, formerly thought to be constant and universal, are now perceived in their ineluctable historicity.’  But there is no need to invoke non-Euclidean geometry to perceive the historicity of the circle, or of pi: see Catherine Goldstein’s ‘L’un est l’autre: pour une histoire du cercle,’ in M. Serres, Elements d’histoire des sciences, Bordas, 1989, pp. 129-149.
33 This is not mere sophistry: the construction of models over number fields actually uses arguments of this kind. A careless construction of the equations defining modular curves may make it appear that pi is included in their field of scalars.
34 Unless you claim, like the present French Minister of Education [at the time of writing, i.e. 1999], that real numbers exist in nature, while imaginary numbers were invented by mathematicians. Thus The image “http://www.log24.com/log/pix06/060312-Char-pi.jpg” cannot be displayed, because it contains errors. would be a physical constant, like the mass of the electron, that can be determined experimentally with increasing accuracy, say by measuring physical circles with ever more sensitive rulers. This sort of position has not been welcomed by most French mathematicians.
35 Cf. M. Kline, Mathematics The Loss of Certainty, p. 324.
36 Compare Morris Hirsch’s remarks in BAMS April 94.
37 IS*, p. 38, footnote 26. Weinberg’s remarks are contained in his article “Sokal’s Hoax,” in the New York Review of Books, August 8, 1996.
38 Metaphors from virtual reality may help here.”

* Earlier defined by Harris as “Impostures Scientifiques (IS), a collection of articles compiled or commissioned by Baudouin Jurdant and published simultaneously as an issue of the journal Alliage and as a book by La Découverte press.”
** Earlier defined by Harris as “Fashionable Nonsense (FN), the North American translation of Impostures Intellectuelles.”

What is the moral of all this French noise?

Perhaps that, in spite of the contemptible nonsense at last summer’s Mykonos conference on mathematics and narrative, stories do have an important role to play in mathematics — specifically, in the history of mathematics.

Despite his disdain for Platonism, exemplified in his remarks on the noteworthy connection of pi with the zeta function in the formula given above, Harris has performed a valuable service to mathematics by pointing out the excellent historical work of Catherine Goldstein.   Ms. Goldstein has demonstrated that even a French nominalist can be a first-rate scholar.  Her essay on circles that Harris cites in a French version is also available in English, and will repay the study of those who, like Barry Mazur and other Harvard savants, are much too careless with the facts of history.  They should consult her “Stories of the Circle,” pp. 160-190 in A History of Scientific Thought, edited by Michel Serres, Blackwell Publishers (December 1995).

For the historically-challenged mathematicians of Harvard, this essay would provide a valuable supplement to the upcoming “Pi Day” talk by Bamberg.

For those who insist on limiting their attention to mathematics proper, and ignoring its history, a suitable Pi Day observance might include becoming familiar with various proofs of the formula, pictured above, that connects pi with the zeta function of 2.  For a survey, see Robin Chapman, Evaluating Zeta(2) (pdf).  Zeta functions in a much wider context will be discussed at next May’s politically correct “Women in Mathematics” program at Princeton, “Zeta Functions All the Way” (pdf).

Thursday, June 23, 2005

Thursday June 23, 2005

Filed under: General,Geometry — Tags: — m759 @ 3:00 pm

Mathematics and Metaphor

The current (June/July) issue of the Notices of the American Mathematical Society has two feature articles.  The first, on the vulgarizer Martin Gardner, was dealt with here in a June 19 entry, Darkness Visible.  The second is related to a letter of André Weil (pdf) that is in turn related to mathematician Barry Mazur’s attempt to rewrite mathematical history  and to vulgarize other people’s research by using metaphors drawn, it would seem, from the Weil letter.
 
A Mathematical Lie conjectures that Mazur’s revising of history was motivated by a desire to dramatize some arcane mathematics, the Taniyama conjecture, that deals with elliptic curves and modular forms, two areas of mathematics that have been known since the nineteenth century to be closely related.

Mazur led author Simon Singh to believe that these two areas of mathematics were, before Taniyama’s conjecture of 1955, completely unrelated — 

“Modular forms and elliptic equations live in completely different regions of the mathematical cosmos, and nobody would ever have believed that there was the remotest link between the two subjects.” — Simon Singh, Fermat’s Enigma, 1998 paperback, p. 182

This is false.  See Robert P. Langlands, review of Elliptic Curves, by Anthony W. Knapp, Bulletin of the American Mathematical Society, January 1994.

It now appears that Mazur’s claim was in part motivated by a desire to emulate the great mathematician André Weil’s manner of speaking; Mazur parrots Weil’s “bridge” and “Rosetta stone” metaphors —

From Peter Woit’s weblog, Feb. 10, 2005:

“The focus of Weil’s letter is the analogy between number fields and the field of algebraic functions of a complex variable. He describes his ideas about studying this analogy using a third, intermediate subject, that of function fields over a finite field, which he thinks of as a ‘bridge‘ or ‘Rosetta stone.'” 

In “A 1940 Letter of André Weil on Analogy in Mathematics,” (pdf), translated by Martin H. Krieger, Notices of the A.M.S., March 2005, Weil writes that

“The purely algebraic theory of algebraic functions in any arbitrary field of constants is not rich enough so that one might draw useful lessons from it. The ‘classical’ theory (that is, Riemannian) of algebraic functions over the field of constants of the complex numbers is infinitely richer; but on the one hand it is too much so, and in the mass of facts some real analogies become lost; and above all, it is too far from the theory of numbers. One would be totally obstructed if there were not a bridge between the two.  And just as God defeats the devil: this bridge exists; it is the theory of the field of algebraic functions over a finite field of constants….

On the other hand, between the function fields and the ‘Riemannian’ fields, the distance is not so large that a patient study would not teach us the art of passing from one to the other, and to profit in the study of the first from knowledge acquired about the second, and of the extremely powerful means offered to us, in the study of the latter, from the integral calculus and the theory of analytic functions. That is not to say that at best all will be easy; but one ends up by learning to see something there, although it is still somewhat confused. Intuition makes much of it; I mean by this the faculty of seeing a connection between things that in appearance are completely different; it does not fail to lead us astray quite often. Be that as it may, my work consists in deciphering a trilingual text {[cf. the Rosetta Stone]}; of each of the three columns I have only disparate fragments; I have some ideas about each of the three languages: but I know as well there are great differences in meaning from one column to another, for which nothing has prepared me in advance. In the several years I have worked at it, I have found little pieces of the dictionary. Sometimes I worked on one column, sometimes under another.”

Here is another statement of the Rosetta-stone metaphor, from Weil’s translator, Martin H.  Krieger, in the A.M.S. Notices of November 2004,  “Some of What Mathematicians Do” (pdf):

“Weil refers to three columns, in analogy with the Rosetta Stone’s three languages and their arrangement, and the task is to ‘learn to read Riemannian.’  Given an ability to read one column, can you find its translation in the other columns?  In the first column are Riemann’s transcendental results and, more generally, work in analysis and geometry.  In the second column is algebra, say polynomials with coefficients in the complex numbers or in a finite field. And in the third column is arithmetic or number theory and combinatorial properties.”

For greater clarity, see  Armand Borel (pdf) on Weil’s Rosetta stone, where the three columns are referred to as Riemannian (transcendental), Italian (“algebraico-geometric,” over finite fields), and arithmetic (i.e., number-theoretic).
 
From Fermat’s Enigma, by Simon Singh, Anchor paperback, Sept. 1998, pp. 190-191:

Barry Mazur: “On the one hand you have the elliptic world, and on the other you have the modular world.  Both these branches of mathematics had been studied intensively but separately…. Than along comes the Taniyama-Shimura conjecture, which is the grand surmise that there’s a bridge between these two completely different worlds.  Mathematicians love to build bridges.”

Simon Singh: “The value of mathematical bridges is enormous.  They enable communities of mathematicians who have been living on separate islands to exchange ideas and explore each other’s  creations…. The great potential of the Taniyama-Shimura conjecture was that it would connect two islands and allow them to speak to each other for the first time.  Barry Mazur thinks of the Taniyama-Shimura conjecture as a translating device similar to the Rosetta stone…. ‘It’s as if you know one language and this Rosetta stone is going to give you an intense understanding of the other language,’ says Mazur.  ‘But the Taniyama-Shimura conjecture is a Rosetta stone with a certain magical power.'”

If Mazur, who is scheduled to speak at a conference on Mathematics and Narrative this July, wants more material on stones with magical powers, he might consult The Blue Matrix and The Diamond Archetype.

Powered by WordPress