Log24

Wednesday, October 22, 2008

Wednesday October 22, 2008

Filed under: General,Geometry — Tags: — m759 @ 9:26 am
Euclid vs. Galois

On May 4, 2005, I wrote a note about how to visualize the 7-point Fano plane within a cube.

Last month, John Baez
showed slides that touched on the same topic. This note is to clear up possible confusion between our two approaches.

From Baez’s Rankin Lectures at the University of Glasgow:

(Click to enlarge)

John Baez, drawing of seven vertices of a cube corresponding to Fano-plane points

Note that Baez’s statement (pdf) “Lines in the Fano plane correspond to planes through the origin [the vertex labeled ‘1’] in this cube” is, if taken (wrongly) as a statement about a cube in Euclidean 3-space, false.

The statement is, however, true of the eightfold cube, whose eight subcubes correspond to points of the linear 3-space over the two-element field, if “planes through the origin” is interpreted as planes within that linear 3-space, as in Galois geometry, rather than within the Euclidean cube that Baez’s slides seem to picture.

This Galois-geometry interpretation is, as an article of his from 2001 shows, actually what Baez was driving at. His remarks, however, both in 2001 and 2008, on the plane-cube relationship are both somewhat trivial– since “planes through the origin” is a standard definition of lines in projective geometry– and also unrelated– apart from the possibility of confusion– to my own efforts in this area. For further details, see The Eightfold Cube.

Tuesday, February 20, 2007

Tuesday February 20, 2007

Filed under: General,Geometry — m759 @ 7:09 am
Symmetry

Today is the 21st birthday of my note “The Relativity Problem in Finite Geometry.”

Some relevant quotations:

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

Describing the branch of mathematics known as Galois theory, Weyl says that it

“… is nothing else but the relativity theory for the set Sigma, a set which, by its discrete and finite character, is conceptually so much simpler than the infinite set of points in space or space-time dealt with by ordinary relativity theory.”

— Weyl, Symmetry, Princeton University Press, 1952, p. 138

Weyl’s set Sigma is a finite set of complex numbers.   Some other sets with “discrete and finite character” are those of 4, 8, 16, or 64 points, arranged in squares and cubes.  For illustrations, see Finite Geometry of the Square and Cube.  What Weyl calls “the relativity problem” for these sets involves fixing “objectively” a class of equivalent coordinatizations.  For what Weyl’s “objectively” means, see the article “Symmetry and Symmetry  Breaking,” by Katherine Brading and Elena Castellani, in the Stanford Encyclopedia of Philosophy:

“The old and natural idea that what is objective should not depend upon the particular perspective under which it is taken into consideration is thus reformulated in the following group-theoretical terms: what is objective is what is invariant with respect to the transformation group of reference frames, or, quoting Hermann Weyl (1952, p. 132), ‘objectivity means invariance with respect to the group of automorphisms [of space-time].‘[22]

22. The significance of the notion of invariance and its group-theoretic treatment for the issue of objectivity is explored in Born (1953), for example. For more recent discussions see Kosso (2003) and Earman (2002, Sections 6 and 7).

References:

Born, M., 1953, “Physical Reality,” Philosophical Quarterly, 3, 139-149. Reprinted in E. Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics, Princeton, NJ: Princeton University Press, 1998, pp. 155-167.

Earman, J., 2002, “Laws, Symmetry, and Symmetry Breaking; Invariance, Conservation Principles, and Objectivity,’ PSA 2002, Proceedings of the Biennial Meeting of the Philosophy of Science Association 2002, forthcoming [Abstract/Preprint available online]

Kosso, P., 2003, “Symmetry, objectivity, and design,” in K. Brading and E. Castellani (eds.), Symmetries in Physics: Philosophical Reflections, Cambridge: Cambridge University Press, pp. 410-421.

Weyl, H., 1952, Symmetry, Princeton, NJ: Princeton University Press.

See also

Archives Henri Poincaré (research unit UMR 7117, at Université Nancy 2, of the CNRS)–

Minkowski, Mathematicians, and the Mathematical Theory of Relativity,” by Scott Walter, in The Expanding Worlds of General Relativity (Einstein Studies, volume 7), H. Goenner, J. Renn, J. Ritter and T. Sauer, editors, Boston/Basel: Birkhäuser, 1999, pp. 45-86–

“Developing his ideas before Göttingen mathematicians in April 1909, Klein pointed out that the new theory based on the Lorentz group (which he preferred to call ‘Invariantentheorie’) could have come from pure mathematics (1910: 19). He felt that the new theory was anticipated by the ideas on geometry and groups that he had introduced in 1872, otherwise known as the Erlangen program (see Gray 1989: 229).”

References:

Gray, Jeremy J. (1989). Ideas of Space. 2d ed. Oxford: Oxford University Press.

Klein, Felix. (1910). “Über die geometrischen Grundlagen der Lorentzgruppe.” Jahresbericht der deutschen Mathematiker-Vereinigung 19: 281-300. [Reprinted: Physikalische Zeitschrift 12 (1911): 17-27].

Related material: A pathetically garbled version of the above concepts was published in 2001 by Harvard University Press.  See Invariances: The Structure of the Objective World, by Robert Nozick.

Friday, November 24, 2006

Friday November 24, 2006

Filed under: General,Geometry — Tags: — m759 @ 1:06 pm
Galois’s Window:

Geometry
from Point
to Hyperspace


by Steven H. Cullinane

  Euclid is “the most famous
geometer ever known
and for good reason:
  for millennia it has been
his window
  that people first look through
when they view geometry.”

  Euclid’s Window:
The Story of Geometry
from Parallel Lines
to Hyperspace
,
by Leonard Mlodinow

“…the source of
all great mathematics
is the special case,
the concrete example.
It is frequent in mathematics
that every instance of a
  concept of seemingly
great generality is
in essence the same as
a small and concrete
special case.”

— Paul Halmos in
I Want To Be a Mathematician

Euclid’s geometry deals with affine
spaces of 1, 2, and 3 dimensions
definable over the field
of real numbers.

Each of these spaces
has infinitely many points.

Some simpler spaces are those
defined over a finite field–
i.e., a “Galois” field–
for instance, the field
which has only two
elements, 0 and 1, with
addition and multiplication
as follows:

+ 0 1
0 0 1
1 1 0
* 0 1
0 0 0
1 0 1
We may picture the smallest
affine spaces over this simplest
field by using square or cubic
cells as “points”:
Galois affine spaces

From these five finite spaces,
we may, in accordance with
Halmos’s advice,
select as “a small and
concrete special case”
the 4-point affine plane,
which we may call

Galois's Window

Galois’s Window.

The interior lines of the picture
are by no means irrelevant to
the space’s structure, as may be
seen by examining the cases of
the above Galois affine 3-space
and Galois affine hyperplane
in greater detail.

For more on these cases, see

The Eightfold Cube,
Finite Relativity,
The Smallest Projective Space,
Latin-Square Geometry, and
Geometry of the 4×4 Square.

(These documents assume that
the reader is familar with the
distinction between affine and
projective geometry.)

These 8- and 16-point spaces
may be used to
illustrate the action of Klein’s
simple group of order 168
and the action of
a subgroup of 322,560 elements
within the large Mathieu group.

The view from Galois’s window
also includes aspects of
quantum information theory.
For links to some papers
in this area, see
  Elements of Finite Geometry.

Tuesday, October 3, 2006

Tuesday October 3, 2006

Filed under: General,Geometry — Tags: , , , — m759 @ 9:26 am

Serious

"I don't think the 'diamond theorem' is anything serious, so I started with blitzing that."

Charles Matthews at Wikipedia, Oct. 2, 2006

"The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas."

— G. H. Hardy, A Mathematician's Apology

Matthews yesterday deleted references to the diamond theorem and related material in the following Wikipedia articles:

Affine group‎
Reflection group‎
Symmetry in mathematics‎
Incidence structure‎
Invariant (mathematics)‎
Symmetry‎
Finite geometry‎
Group action‎
History of geometry‎

This would appear to be a fairly large complex of mathematical ideas.

See also the following "large complex" cited, following the above words of Hardy, in Diamond Theory:

Affine geometry, affine planes, affine spaces, automorphisms, binary codes, block designs, classical groups, codes, coding theory, collineations, combinatorial, combinatorics, conjugacy classes, the Conwell correspondence, correlations, design theory, duads, duality, error correcting codes, exceptional groups, finite fields, finite geometry, finite groups, finite rings, Galois fields, generalized quadrangles, generators, geometry, GF(2), GF(4), the (24,12) Golay code, group actions, group theory, Hadamard matrices, hypercube, hyperplanes, hyperspace, incidence structures, invariance, Karnaugh maps, Kirkman's schoolgirl problem, Latin squares, Leech lattice, linear groups, linear spaces, linear transformations, Mathieu groups, matrix theory, Meno, Miracle Octad Generator, MOG, multiply transitive groups, octads, the octahedral group, orthogonal arrays, outer automorphisms, parallelisms, partial geometries, permutation groups, PG(3,2), polarities, Polya-Burnside theorem, projective geometry, projective planes, projective spaces, projectivities, Reed-Muller codes, the relativity problem, Singer cycle, skew lines,  sporadic simple groups, Steiner systems, symmetric, symmetry, symplectic, synthemes, synthematic, tesseract, transvections, Walsh functions, Witt designs.

Monday, August 28, 2006

Monday August 28, 2006

Filed under: General,Geometry — Tags: — m759 @ 1:00 am
Today's Sinner:

Augustine of Hippo, who is said to
have died on this date in 430 A.D.

"He is, after all, not merely taking over a Neoplatonic ontology, but he is attempting to combine it with a scriptural tradition of a rather different sort, one wherein the divine attributes most prized in the Greek tradition (e.g. necessity, immutability, and atemporal eternity) must somehow be combined with the personal attributes (e.g. will, justice, and historical purpose) of the God of Abraham, Isaac, and Jacob."

Stanford Encyclopedia of Philosophy on Augustine

Here is a rather different attempt
to combine the eternal with the temporal:

 

The Eternal

Symbol of necessity,
immutability, and
atemporal eternity:

The image “http://www.log24.com/log/pix06A/060828-Cube.jpg” cannot be displayed, because it contains errors.

For details, see
finite geometry of
the square and cube
.

The Temporal

Symbol of the
God of Abraham,
Isaac, and Jacob:

The image “http://www.log24.com/log/pix06A/060828-Cloud.jpg” cannot be displayed, because it contains errors.

For details, see
Under God
(Aug. 11, 2006)

The eternal
combined with
the temporal:

 

Singer 63-cycle in the Galois field GF(64) used to order the I Ching hexagrams

Related material:

Hitler's Still Point and
the previous entry.
 

Sunday, July 9, 2006

Sunday July 9, 2006

Filed under: General,Geometry — m759 @ 11:00 am

Today’s birthday:
Tom Hanks, star of
“The Da Vinci Code”

Ben Nicholson
and the Holy Grail


Part I:
A Current Exhibit

The image “http://www.log24.com/log06/saved/KufiBlocks1.gif” cannot be displayed, because it contains errors.

Kufi Blocks“*

The image “http://www.log24.com/log/pix06A/060709-Kufi2.jpg” cannot be displayed, because it contains errors.

by Ben Nicholson,
Illinois Institute of Technology

Part II:
Some Background

A. Diamond Theory, a 1976 preprint containing, in the original version, the designs on the faces of Nicholson’s “Kufi blocks,” as well as some simpler traditional designs, and
B. Block Designs,” a web page illustrating design blocks based on the 1976 preprint.

Part III:
The Leonardo Connection

 

See Modern-Day Leonardos, part of an account of a Leonardo exhibit at Chicago’s Museum of Science and Industry that includes Ben Nicholson and his “Kufi Blocks.”

Part IV:
Nicholson’s Grail Quest

“I’m interested in locating the holy grail of the minimum means to express the most complex ideas.”

Ben Nicholson in a 2005 interview

Nicholson’s quest has apparently lasted for some time.  Promotional material for a 1996 Nicholson exhibit in Montreal says it “invites visitors of all ages to experience a contemporary architect’s search for order, meaning and logic in a world of art, science and mystery.”  The title of that exhibit was “Uncovering Geometry.”

For web pages to which this same title might apply, see Quilt Geometry, Galois Geometry, and Finite Geometry of the Square and Cube.

* “Square Kufi” calligraphy is used in Islamic architectural ornament.  I do not know what, if anything, is signified by Nicholson’s 6×12 example of “Kufi blocks” shown above.

Friday, June 23, 2006

Friday June 23, 2006

Filed under: General,Geometry — Tags: , — m759 @ 2:56 pm

Binary Geometry

There is currently no area of mathematics named “binary geometry.” This is, therefore, a possible name for the geometry of sets with 2n elements (i.e., a sub-topic of Galois geometry and of algebraic geometry over finite fields– part of Weil’s “Rosetta stone” (pdf)).

Examples:

Friday, May 26, 2006

Friday May 26, 2006

Filed under: General,Geometry — Tags: , — m759 @ 8:00 am

A Living Church
continued from March 27

"The man who lives in contact with what he believes to be a living Church is a man always expecting to meet Plato and Shakespeare to-morrow at breakfast."

— G. K. Chesterton

The image “http://www.log24.com/log/pix06A/060526-JackInTheBox.jpg” cannot be displayed, because it contains errors.
Shakespearean
Fool

Related material:


Yesterday's entries

and their link to
The Line

as well as

Galois Geometry

and the remarks
of Oxford professor
Marcus du Sautoy,
who claims that
"the right side of the brain
is responsible for mathematics."

Let us hope that Professor du Sautoy
is more reliable on zeta functions,
his real field of expertise,
than on neurology.

The picture below may help
to clear up his confusion
between left and right.

His confusion about
pseudoscience may not
be so easily remedied.

The image “http://www.log24.com/log/pix06A/060526-BrainLR1.jpg” cannot be displayed, because it contains errors.
flickr.com/photos/jaycross/3975200/

(Any resemblance to the film
"Hannibal" is purely coincidental.)
 

Wednesday, May 4, 2005

Wednesday May 4, 2005

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 pm
The Fano Plane
Revisualized:

 

 The Eightfold Cube

or, The Eightfold Cube

Here is the usual model of the seven points and seven lines (including the circle) of the smallest finite projective plane (the Fano plane):
 
The image “http://www.log24.com/theory/images/Fano.gif” cannot be displayed, because it contains errors.
 

Every permutation of the plane's points that preserves collinearity is a symmetry of the  plane.  The group of symmetries of the Fano plane is of order 168 and is isomorphic to the group  PSL(2,7) = PSL(3,2) = GL(3,2). (See Cameron on linear groups (pdf).)

The above model indicates with great clarity six symmetries of the plane– those it shares with the equilateral triangle.  It does not, however, indicate where the other 162 symmetries come from.  

Shown below is a new model of this same projective plane, using partitions of cubes to represent points:

 

Fano plane with cubes as points
 
The cubes' partitioning planes are added in binary (1+1=0) fashion.  Three partitioned cubes are collinear if and only if their partitioning planes' binary sum equals zero.

 

The second model is useful because it lets us generate naturally all 168 symmetries of the Fano plane by splitting a cube into a set of four parallel 1x1x2 slices in the three ways possible, then arbitrarily permuting the slices in each of the three sets of four. See examples below.

 

Fano plane group - generating permutations

For a proof that such permutations generate the 168 symmetries, see Binary Coordinate Systems.

 

(Note that this procedure, if regarded as acting on the set of eight individual subcubes of each cube in the diagram, actually generates a group of 168*8 = 1,344 permutations.  But the group's action on the diagram's seven partitions of the subcubes yields only 168 distinct results.  This illustrates the difference between affine and projective spaces over the binary field GF(2).  In a related 2x2x2 cubic model of the affine 3-space over GF(2) whose "points" are individual subcubes, the group of eight translations is generated by interchanges of parallel 2x2x1 cube-slices.  This is clearly a subgroup of the group generated by permuting 1x1x2 cube-slices.  Such translations in the affine 3-space have no effect on the projective plane, since they leave each of the plane model's seven partitions– the "points" of the plane– invariant.)

To view the cubes model in a wider context, see Galois Geometry, Block Designs, and Finite-Geometry Models.

 

For another application of the points-as-partitions technique, see Latin-Square Geometry: Orthogonal Latin Squares as Skew Lines.

For more on the plane's symmetry group in another guise, see John Baez on Klein's Quartic Curve and the online book The Eightfold Way.  For more on the mathematics of cubic models, see Solomon's Cube.

 

For a large downloadable folder with many other related web pages, see Notes on Finite Geometry.

Friday, November 29, 2002

Friday November 29, 2002

Filed under: General,Geometry — Tags: , — m759 @ 1:06 pm

A Logocentric Archetype

Today we examine the relativist, nominalist, leftist, nihilist, despairing, depressing, absurd, and abominable work of Samuel Beckett, darling of the postmodernists.

One lens through which to view Beckett is an essay by Jennifer Martin, "Beckettian Drama as Protest: A Postmodern Examination of the 'Delogocentering' of Language." Martin begins her essay with two quotations: one from the contemptible French twerp Jacques Derrida, and one from Beckett's masterpiece of stupidity, Molloy. For a logocentric deconstruction of Derrida, see my note, "The Shining of May 29," which demonstrates how Derrida attempts to convert a rather important mathematical result to his brand of nauseating and pretentious nonsense, and of course gets it wrong. For a logocentric deconstruction of Molloy, consider the following passage:

"I took advantage of being at the seaside to lay in a store of sucking-stones. They were pebbles but I call them stones…. I distributed them equally among my four pockets, and sucked them turn and turn about. This raised a problem which I first solved in the following way. I had say sixteen stones, four in each of my four pockets these being the two pockets of my trousers and the two pockets of my greatcoat. Taking a stone from the right pocket of my greatcoat, and putting it in my mouth, I replaced it in the right pocket of my greatcoat by a stone from the right pocket of my trousers, which I replaced by a stone from the left pocket of my trousers, which I replaced by a stone from the left pocket of my greatcoat, which I replaced by the stone which was in my mouth, as soon as I had finished sucking it. Thus there were still four stones in each of my four pockets, but not quite the same stones….But this solution did not satisfy me fully. For it did not escape me that, by an extraordinary hazard, the four stones circulating thus might always be the same four."

Beckett is describing, in great detail, how a damned moron might approach the extraordinarily beautiful mathematical discipline known as group theory, founded by the French anticleric and leftist Evariste Galois. Disciples of Derrida may play at mimicking the politics of Galois, but will never come close to imitating his genius. For a worthwhile discussion of permutation groups acting on a set of 16 elements, see R. D. Carmichael's masterly work, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937, reprinted by Dover, New York, 1956.

There are at least two ways of approaching permutations on 16 elements in what Pascal calls "l'esprit géométrique." My website Diamond Theory discusses the action of the affine group in a four-dimensional finite geometry of 16 points. For a four-dimensional euclidean hypercube, or tesseract, with 16 vertices, see the highly logocentric movable illustration by Harry J. Smith. The concept of a tesseract was made famous, though seen through a glass darkly, by the Christian writer Madeleine L'Engle in her novel for children and young adults, A Wrinkle in Tme.

This tesseract may serve as an archetype for what Pascal, Simone Weil (see my earlier notes), Harry J. Smith, and Madeleine L'Engle might, borrowing their enemies' language, call their "logocentric" philosophy.

For a more literary antidote to postmodernist nihilism, see Archetypal Theory and Criticism, by Glen R. Gill.

For a discussion of the full range of meaning of the word "logos," which has rational as well as religious connotations, click here.

« Newer Posts

Powered by WordPress