Seeing the Finite Structure
The following supplies some context for remarks of Halmos on combinatorics.
From Paul Halmos: Celebrating 50 years of Mathematics, by John H. Ewing, Paul Richard Halmos, Frederick W. Gehring, published by Springer, 1991–
Interviews with Halmos, “Paul Halmos by Parts,” by Donald J. Albers–
“Part II: In Touch with God*“– on pp. 27-28:
The Root of All Deep Mathematics
“Albers. In the conclusion of ‘Fifty Years of Linear Algebra,’ you wrote: ‘I am inclined to believe that at the root of all deep mathematics there is a combinatorial insight… I think that in this subject (in every subject?) the really original, really deep insights are always combinatorial, and I think for the new discoveries that we need– the pendulum needs– to swing back, and will swing back in the combinatorial direction.’ I always thought of you as an analyst.
Halmos: People call me an analyst, but I think I’m a born algebraist, and I mean the same thing, analytic versus combinatorial-algebraic. I think the finite case illustrates and guides and simplifies the infinite.
Some people called me full of baloney when I asserted that the deep problems of operator theory could all be solved if we knew the answer to every finite dimensional matrix question. I still have this religion that if you knew the answer to every matrix question, somehow you could answer every operator question. But the ‘somehow’ would require genius. The problem is not, given an operator question, to ask the same question in finite dimensions– that’s silly. The problem is– the genius is– given an infinite question, to think of the right finite question to ask. Once you thought of the finite answer, then you would know the right answer to the infinite question.
Combinatorics, the finite case, is where the genuine, deep insight is. Generalizing, making it infinite, is sometimes intricate and sometimes difficult, and I might even be willing to say that it’s sometimes deep, but it is nowhere near as fundamental as seeing the finite structure.”
on a Book Cover:
Walsh Series: An Introduction
to Dyadic Harmonic Analysis,
by F. Schipp et al.,
Taylor & Francis, 1990
Walsh Series states that Walsh functions provide “the simplest non-trivial model for harmonic analysis.”
Whether the above sketch of the passage from operator theory to harmonic analysis to Walsh functions to finite geometry can ever help find “the right finite question to ask,” I do not know. It at least suggests that finite geometry (and my own work on models in finite geometry) may not be completely irrelevant to mathematics generally regarded as more deep.
* See the Log24 entries following Halmos’s death.