Log24

Wednesday, August 1, 2012

Elementary Finite Geometry

Filed under: General,Geometry — Tags: , , , — m759 @ 7:16 pm

I. General finite geometry (without coordinates):

A finite affine plane of order has n^2 points.

A finite projective plane of order n  has n^2 + n + 1 

points because it is formed from an order-n finite affine 

plane by adding a line at infinity  that contains n + 1 points.

Examples—

Affine plane of order 3

Projective plane of order 3

II. Galois finite geometry (with coordinates over a Galois field):

A finite projective Galois plane of order n has n^2 + n + 1

points because it is formed from a finite affine Galois 3-space

of order n with n^3 points by discarding the point (0,0,0) and 

identifying the points whose coordinates are multiples of the

(n-1) nonzero scalars.

Note: The resulting Galois plane of order n has 

(n^3-1)/(n-1)= (n^2 + n + 1) points because 

(n^2 + n + 1)(n – 1) =

(n^3 + n^2 + n – n^2 – n – 1) = (n^3 – 1) .
 

III. Related art:

Another version of a 1994 picture that accompanied a New Yorker
article, "Atheists with Attitude," in the issue dated May 21, 2007:

IMAGE- 'Four Gods,' by Jonathan Borofsky

The Four Gods  of Borofsky correspond to the four axes of 
symmetry
  of a square and to the four points on a line at infinity 
in an order-3 projective plane as described in Part I above.

Those who prefer literature to mathematics may, if they like,
view the Borofsky work as depicting

"Blake's Four Zoas, which represent four aspects
of the Almighty God" —Wikipedia

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress