Wednesday, November 2, 2011

The Poetry of Universals

Filed under: General,Geometry — m759 @ 7:59 PM

A search today, All Souls Day, for relevant learning
at All Souls College, Oxford, yields the person of
Sir Michael Dummett and the following scholarly page—

(Click to enlarge.)


My own background is in mathematics rather than philosophy.
From a mathematical point of view, the cells discussed above
seem related to some "universals" in an example of Quine.

In Quine's example,* universals are certain equivalence classes
(those with the "same shape") of a family of figures
(33 convex regions) selected from the 28 = 256 subsets
of an eight-element set of plane regions.

A smaller structure, closer to Wright's concerns above,
is a universe of 24 = 16 subsets of a 4-element set.

The number of elements in this universe of Concepts  coincides,
as it happens, with the number obtained by multiplying out
the title of T. S. Eliot's Four Quartets .

For a discussion of functions that map "cells" of the sort Wright
discusses— in the quartets example, four equivalence classes,
each with four elements, that partition the 16-element universe—
onto a four-element set, see Poetry's Bones.

For some philosophical background to the Wright passage
above, see "The Concept Horse," by Harold W. Noonan—
Chapter 9, pages 155-176, in Universals, Concepts, and Qualities ,
edited by P. F. Strawson and Arindam Chakrabarti,
Ashgate Publishing, 2006.

For a different approach to that concept, see Devil's Night, 2011.

* Admittedly artificial. See From a Logical Point of View , IV, 3

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress