The sliding window in blue below
Click for the web page shown.
is an example of a more general concept.
Such a sliding window,* if one-dimensional of length n , can be applied to a sequence of 0's and 1's to yield a sequence of n-dimensional vectors. For example— an "m-sequence" (where the "m" stands for "maximum length") of length 63 can be scanned by a length-6 sliding window to yield all possible 6-dimensional binary vectors except (0,0,0,0,0,0).
For details, see A Galois Field—
The image is from Bert Jagers at his page on the Galois field GF(64) that he links to as "A Field of Honor."
For a discussion of the m-sequence shown in circular form above, see Jagers's "Pseudo-Random Sequences from GF(64)." Here is a noncircular version of the length-63 m-sequence described by Jagers (with length scale below)—
100000100001100010100111101000111001001011011101100110101011111
123456789012345678901234567890123456789012345678901234567890123
This m-sequence may be viewed as a condensed version of 63 of the 64 I Ching hexagrams. (See related material in this journal.)
For a more literary approach to the window concept, see The Seventh Symbol (scroll down after clicking).
* Moving windows also appear (in a different way) In image processing, as convolution kernels .