Log24

Wednesday, December 12, 2018

Kummerhenge Continues.

Filed under: G-Notes,General,Geometry — Tags: , , — m759 @ 7:24 pm

Those pleased by what Ross Douthat today called
"The Return of Paganism" are free to devise rituals
involving what might be called "the sacred geometry
of the Kummer 166  configuration."

As noted previously in this journal, 

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

Geometric incarnation and the Kummer configuration

See also earlier posts also tagged "Kummerhenge" and 
another property of the remarkable Kummer 166 

The Kummer 16_6 Configuration and the Nordstrom-Robinson Code

For some related literary remarks, see "Transposed" in  this journal.

Some background from 2001 —

Saturday, September 22, 2018

Minimalist Configuration

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 11:03 pm

From the previous post

From Wikipedia

From Log24

Sunday, June 24, 2018

For 6/24

Filed under: General,Geometry — Tags: — m759 @ 10:12 am

A clue to the relationship between the Kummer (16, 6)
configuration and the large Mathieu group M24

Related material —

See too the diamond-theorem correlation.

Saturday, June 16, 2018

Kummer’s (16, 6) (on 6/16)

Filed under: General,Geometry — Tags: , , — m759 @ 9:00 am

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

See too "The Ruler of Reality" in this journal.

Related material —

A more esoteric artifact: The Kummer 166 Configuration . . .

An array of Göpel tetrads appears in the background below.

"As you can see, we've had our eye on you
for some time now, Mr. Anderson."

Tuesday, July 12, 2016

Klein and Kummer Configurations in 1889

Filed under: General,Geometry — m759 @ 11:00 pm

Further details from Edmund Hess in 1889* related to
last night's remarks on the Klein 6015 configuration 
and the Kummer 166 configuration —

* Edmund Hess, "Beiträge zur Theorie der räumlichen Configurationen.
Ueber die Klein'sche Configuration Cf. (60₁₅, 30₆) und einige
bemerkenswerthe aus dieser ableitbare räumliche Configurationen."

Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen 
Deutschen Akademie der Naturforscher
, Vol.55, No. 2
, pp. 98-167

Wednesday, May 25, 2016

Kummer and Dirac

From "Projective Geometry and PT-Symmetric Dirac Hamiltonian,"
Y. Jack Ng  and H. van Dam, 
Physics Letters B , Volume 673, Issue 3,
23 March 2009, Pages 237–239

(http://arxiv.org/abs/0901.2579v2, last revised Feb. 20, 2009)

" Studies of spin-½ theories in the framework of projective geometry
have been undertaken before. See, e.g., Ref. [4]. 1 "

1 These papers are rather mathematical and technical.
The authors of the first two papers discuss the Dirac equation
in terms of the Plucker-Klein correspondence between lines of
a three-dimensional projective space and points of a quadric
in a five-dimensional projective space. The last paper shows
that the Dirac equation bears a certain relation to Kummer’s
surface, viz., the structure of the Dirac ring of matrices is 
related to that of Kummer’s 166 configuration . . . ."

[4]

O. Veblen
Proc. Natl. Acad. Sci. USA , 19 (1933), p. 503
Full Text via CrossRef

E.M. Bruins
Proc. Nederl. Akad. Wetensch. , 52 (1949), p. 1135

F.C. Taylor Jr., Master thesis, University of North Carolina
at Chapel Hill (1968), unpublished


A remark of my own on the structure of Kummer’s 166 configuration . . . .

See that structure in this  journal, for instance —

See as well yesterday morning's post.

Tuesday, February 19, 2013

Configurations

Filed under: General,Geometry — Tags: , , — m759 @ 12:24 pm

Yesterday's post Permanence dealt with the cube
as a symmetric model of the finite projective plane
PG(2,3), which has 13 points and 13 lines. The points
and lines of the finite geometry occur in the cube as
the 13 axes of symmetry and the 13 planes through
the center perpendicular to those axes. If the three
axes lying in  a plane that cuts the cube in a hexagon
are supplemented by the axis perpendicular  to that
plane, each plane is associated with four axes and,
dually, each axis is associated with four planes.

My web page on this topic, Cubist Geometries, was
written on February 27, 2010, and first saved to the
Internet Archive on Oct. 4, 2010

For a more recent treatment of this topic that makes
exactly the same points as the 2010 page, see p. 218
of Configurations from a Graphical Viewpoint , by
Tomaž Pisanski and Brigitte Servatius, published by
Springer on Sept. 23, 2012 (date from both Google
Books
and Amazon.com):

For a similar 1998 treatment of the topic, see Burkard Polster's 
A Geometrical Picture Book  (Springer, 1998), pp. 103-104.

The Pisanski-Servatius book reinforces my argument of Jan. 13, 2013,
that the 13 planes through the cube's center that are perpendicular
to the 13 axes of symmetry of the cube should be called the cube's 
symmetry planes , contradicting the usual use of of that term.

That argument concerns the interplay  between Euclidean and
Galois geometry. Pisanski and Servatius (and, in 1998, Polster)
emphasize the Euclidean square and cube as guides* to
describing the structure of a Galois space. My Jan. 13 argument
uses Galois  structures as a guide to re-describing those of Euclid .
(For a similar strategy at a much more sophisticated level,
see a recent Harvard Math Table.)

Related material:  Remarks on configurations in this journal
during the month that saw publication of the Pisanski-Servatius book.

* Earlier guides: the diamond theorem (1978), similar theorems for
  2x2x2 (1984) and 4x4x4 cubes (1983), and Visualizing GL(2,p)
  (1985). See also Spaces as Hypercubes (2012).

Thursday, September 27, 2012

Kummer and the Cube

Filed under: General,Geometry — Tags: , , — m759 @ 7:11 pm

Denote the d-dimensional hypercube by  γd .

"… after coloring the sixty-four vertices of  γ6
alternately red and blue, we can say that
the sixteen pairs of opposite red vertices represent
the sixteen nodes of Kummer's surface, while
the sixteen pairs of opposite blue vertices
represent the sixteen tropes."

— From "Kummer's 16," section 12 of Coxeter's 1950
    "Self-dual Configurations and Regular Graphs"

Just as the 4×4 square represents the 4-dimensional
hypercube  γ4  over the two-element Galois field GF(2),
so the 4x4x4 cube represents the 6-dimensional
hypercube  γ6  over GF(2).

For religious interpretations, see
Nanavira Thera (Indian) and
I Ching  geometry (Chinese).

See also two professors in The New York Times
discussing images of the sacred in an op-ed piece
dated Sept. 26 (Yom Kippur).

Tuesday, February 14, 2012

The Ninth Configuration

Filed under: General,Geometry — m759 @ 2:01 pm

The showmanship of Nicki Minaj at Sunday's
Grammy Awards suggested the above title, 
that of a novel by the author of The Exorcist .

The Ninth Configuration 

The ninth* in a list of configurations—

"There is a (2d-1)d  configuration
  known as the Cox configuration."

MathWorld article on "Configuration"

For further details on the Cox 326 configuration's Levi graph,
a model of the 64 vertices of the six-dimensional hypercube γ6  ,
see Coxeter, "Self-Dual Configurations and Regular Graphs,"
Bull. Amer. Math. Soc.  Vol. 56, pages 413-455, 1950.
This contains a discussion of Kummer's 166 as it 
relates to  γ6  , another form of the 4×4×4 Galois cube.

See also Solomon's Cube.

* Or tenth, if the fleeting reference to 113 configurations is counted as the seventh—
  and then the ninth  would be a 153 and some related material would be Inscapes.

Friday, March 18, 2011

Defining Configurations*

Filed under: General,Geometry — Tags: , — m759 @ 7:00 pm

The On-Line Encyclopedia of Integer Sequences has an article titled "Number of combinatorial configurations of type (n_3)," by N.J.A. Sloane and D. Glynn.

From that article:

  • DEFINITION: A combinatorial configuration of type (n_3) consists of an (abstract) set of n points together with a set of n triples of points, called lines, such that each point belongs to 3 lines and each line contains 3 points.
  • EXAMPLE: The unique (8_3) configuration consists of the triples 125, 148, 167, 236, 278, 347, 358, 456.

The following corrects the word "unique" in the example.

http://www.log24.com/log/pix11/110320-MoebiusKantorConfig500w.jpg

* This post corrects an earlier post, also numbered 14660 and dated 7 PM March 18, 2011, that was in error.
   The correction was made at about 11:50 AM on March 20, 2011.

_____________________________________________________________

Update of March 21

The problem here is of course with the definition. Sloane and Glynn failed to include in their definition a condition that is common in other definitions of configurations, even abstract or purely "combinatorial" configurations. See, for instance, Configurations of Points and Lines , by Branko Grunbaum (American Mathematical Society, 2009), p. 17—

In the most general sense we shall consider combinatorial (or abstract) configurations; we shall use the term set-configurations as well. In this setting "points" are interpreted as any symbols (usually letters or integers), and "lines" are families of such symbols; "incidence" means that a "point" is an element of a "line". It follows that combinatorial configurations are special kinds of general incidence structures. Occasionally, in order to simplify and clarify the language, for "points" we shall use the term marks, and for "lines" we shall use blocks. The main property of geometric configurations that is preserved in the generalization to set-configurations (and that characterizes such configurations) is that two marks are incident with at most one block, and two blocks with at most one mark.

Whether or not omitting this "at most one" condition from the definition is aesthetically the best choice, it dramatically changes the number  of configurations in the resulting theory, as the above (8_3) examples show.

Update of March 22 (itself updated on March 25)

For further background on configurations, see Dolgachev—

http://www.log24.com/log/pix11/110322-DolgachevIntro.gif

Note that the two examples Dolgachev mentions here, with 16 points and 9 points, are not unrelated to the geometry of 4×4 and 3×3 square arrays. For the Kummer and related 16-point configurations, see section 10.3, "The Three Biplanes of Order 4," in Burkard Polster's A Geometrical Picture Book  (Springer, 1998). See also the 4×4 array described by Gordon Royle in an undated web page and in 1980 by Assmus and Sardi. For the Hesse configuration, see (for instance) the passage from Coxeter quoted in Quaternions in an Affine Galois Plane.

Update of March 27

See the above link to the (16,6) 4×4 array and the (16,6) exercises using this array in R.D. Carmichael's classic Introduction to the Theory of Groups of Finite Order  (1937), pp. 42-43. For a connection of this sort of 4×4 geometry to the geometry of the diamond theorem, read "The 2-subsets of a 6-set are the points of a PG(3,2)" (a note from 1986) in light of R.W.H.T. Hudson's 1905 classic Kummer's Quartic Surface , pages 8-9, 16-17, 44-45, 76-77, 78-79, and 80.

Thursday, December 3, 2020

Brick Joke

The "bricks" in posts tagged Octad Group suggest some remarks
from last year's HBO "Watchmen" series —

Related material — The two  bricks constituting a 4×4 array, and . . .

"(this is the famous Kummer abstract configuration )"
Igor Dolgachev, ArXiv, 16 October 2019.

As is this

.

The phrase "octad group" does not, as one might reasonably
suppose, refer to symmetries of an octad (a "brick"), but
instead to symmetries of the above 4×4 array.

A related Broomsday event for the Church of Synchronology

Friday, February 7, 2020

Correspondences

The 15  2-subsets of a 6-set correspond to the 15 points of PG(3,2).
(Cullinane, 1986*)

The 35  3-subsets of a 7-set correspond to the 35 lines of PG(3,2).
(Conwell, 1910)

The 56  3-subsets of an 8-set correspond to the 56 spreads of PG(3,2).
(Seidel, 1970)

Each correspondence above may have been investigated earlier than
indicated by the above dates , which are the earliest I know of.

See also Correspondences in this journal.

* The above 1986 construction of PG(3,2) from a 6-set also appeared
in the work of other authors in 1994 and 2002 . . .

Addendum at 5:09 PM suggested by an obituary today for Stephen Joyce:

See as well the word correspondences  in
"James Joyce and the Hermetic Tradition," by William York Tindall
(Journal of the History of Ideas , Jan. 1954).

Friday, March 29, 2019

Front-Row Seed

Filed under: General — Tags: — m759 @ 4:17 pm

"This outer automorphism can be regarded as
the seed from which grow about half of the
sporadic simple groups…." — Noam Elkies

Closely related material —

The Kummer 16_6 Configuration and the Nordstrom-Robinson Code

The top two cells of the Curtis "heavy brick" are also
the key to the diamond-theorem correlation.

Thursday, March 28, 2019

Culture

Filed under: General,Geometry — Tags: , — m759 @ 9:35 pm

The previous post, "Dream of Plenitude," suggests . . .

The Kummer 16_6 Configuration and the Nordstrom-Robinson Code

"So here's to you, Nordstrom-Robinson . . . ."

Tuesday, February 26, 2019

Citation

Filed under: General — Tags: , , , — m759 @ 12:00 pm

Some related material in this journal — See a search for k6.gif.

Some related material from Harvard —

Elkies's  "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15  2-subsets of a 6-set.

For the connection to PG(3,2), see Finite Geometry of the Square and Cube.

The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —

See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Tuesday, June 19, 2018

Ici vient M. Jordan

Filed under: General,Geometry — Tags: , — m759 @ 2:13 am

NY Times correction, online June 16, about 'Here Comes Mr. Jordan' and 'Heaven Can Wait'

See also this  journal on Saturday morning, June 16.

Tuesday, July 12, 2016

Group Elements and Skew Lines

Filed under: General,Geometry — Tags: — m759 @ 12:00 am

The following passage by Igor Dolgachev (Good Friday, 2003
seems somewhat relevant (via its connection to Kummer's 166 )
to previous remarks here on Dirac matrices and geometry

Note related remarks from E. M. Bruins in 1959 —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

Tuesday, February 9, 2016

Cubism

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

IMAGE- Redefining the cube's symmetry planes: 13 planes, not 9.

The hexagons above appear also in Gary W. Gibbons,
"The Kummer Configuration and the Geometry of Majorana Spinors," 
1993, in a cube model of the Kummer 166 configuration

From Gary W. Gibbons, 'The Kummer Configuration and the Geometry of Majorana Spinors,' 1993, a cube model of the Kummer 16_6 configuration

Related material — The Religion of Cubism (May 9, 2003).

Monday, November 23, 2015

Dirac and Line Geometry

Some background for my post of Nov. 20,
"Anticommuting Dirac Matrices as Skew Lines" —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

His earlier paper that Bruins refers to, "Line Geometry
and Quantum Mechanics," is available in a free PDF.

For a biography of Bruins translated by Google, click here.

For some additional historical background going back to
Eddington, see Gary W. Gibbons, "The Kummer
Configuration and the Geometry of Majorana Spinors,"
pages 39-52 in Oziewicz et al., eds., Spinors, Twistors,
Clifford Algebras, and Quantum Deformations:
Proceedings of the Second Max Born Symposium held
near Wrocław, Poland, September 1992
 . (Springer, 2012,
originally published by Kluwer in 1993.)

For more-recent remarks on quantum geometry, see a
paper by Saniga cited in today's update to my Nov. 20 post

Sunday, September 22, 2013

Incarnation, Part 2

Filed under: General,Geometry — Tags: , , , — m759 @ 10:18 am

From yesterday —

"…  a list of group theoretic invariants
and their geometric incarnation…"

David Lehavi on the Kummer 166 configuration in 2007

Related material —

IMAGE- 'This is not mathematics; this is theology.' - Paul Gordan

"The hint half guessed, the gift half understood, is Incarnation."

T. S. Eliot in Four Quartets

"This is not theology; this is mathematics."

— Steven H. Cullinane on  four quartets

To wit:


Click to enlarge.

Saturday, September 21, 2013

Geometric Incarnation

The  Kummer 166  configuration  is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.

See Configurations and Squares.

The Wikipedia article Kummer surface  uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."

Geometric Incarnation in the Galois Tesseract

Related material from finitegeometry.org —

IMAGE- 4x4 Geometry: Rosenhain and Göpel Tetrads and the Kummer Configuration

* Apparently from David Lehavi on March 18, 2007, at Citizendium .

Monday, April 1, 2013

Desargues via Rosenhain

Filed under: General,Geometry — Tags: , , — m759 @ 6:00 pm

Background: Rosenhain and Göpel Tetrads in PG(3,2)

Introduction:

The Large Desargues Configuration

Added by Steven H. Cullinane on Friday, April 19, 2013

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia 
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem, 
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line 
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the 
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in the post of April 1 that follows
this introduction, described concisely 
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

 

 

 

A connection discovered today (April 1, 2013)—

(Click to enlarge the image below.)

Update of April 18, 2013

Note that  Baker's Desargues-theorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for 
further details.

(End of April 18, 2013 update.)

Update of April 14, 2013

See Baker's Proof (Edited for the Web) for a detailed explanation 
of the above picture of Baker's Desargues-theorem frontispiece.

(End of April 14, 2013 update.)

Update of April 12, 2013

A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:

IMAGE- Desargues' theorem with three triangles, and Galois-geometry version

(End of update of April 12, 2013)

Update of April 13, 2013

Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
IMAGE- Veblen and Young 1910 Desargues illustration, with 2013 Galois-geometry version

See also the original Veblen-Young figure in context.

(End of update of April 13, 2013)

Rota's remarks, while perhaps not completely accurate, provide some context
for the above Desargues-Rosenhain connection.  For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.

For the recent  context of the above finite-geometry version of Baker's Vol. I
frontispiece, see Sunday evening's finite-geometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.

For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3-Space.

In summary… the following classical-geometry figures
are closely related to the Galois geometry PG(3,2):

Volume I of Baker's Principles  
has a cover closely related to 
the Rosenhain tetrads in PG(3,2)
Volume IV of Baker's Principles 
has a cover closely related to
the Göpel tetrads in PG(3,2) 
Foundations
(click to enlarge)

 

 

 

 

Higher Geometry
(click to enlarge)

 

 

 

 

 

Sunday, March 10, 2013

Galois Space

Filed under: General,Geometry — Tags: — m759 @ 5:30 pm

(Continued)

The 16-point affine Galois space:

Further properties of this space:

In Configurations and Squares, see the
discusssion of the Kummer 166 configuration.

Some closely related material:

  • Wolfgang Kühnel,
    "Minimal Triangulations of Kummer Varieties,"
    Abh. Math. Sem. Univ. Hamburg 57, 7-20 (1986).

    For the first two pages, click here.

  • Jonathan Spreer and Wolfgang Kühnel,
    "Combinatorial Properties of the 3 Surface:
    Simplicial Blowups and Slicings,"
    preprint, 26 pages. (2009/10) (pdf).
    (Published in Experimental Math. 20,
    issue 2, 201–216 (2011).)

Sunday, June 5, 2011

Edifice Complex

Filed under: General,Geometry — Tags: , , , — m759 @ 7:00 pm

"Total grandeur of a total edifice,
Chosen by an inquisitor of structures
For himself. He stops upon this threshold,
As if the design of all his words takes form
And frame from thinking and is realized."

— Wallace Stevens, "To an Old Philosopher in Rome"

The following edifice may be lacking in grandeur,
and its properties as a configuration  were known long
before I stumbled across a description of it… still…

"What we do may be small, but it has
 a certain character of permanence…."
 — G.H. Hardy, A Mathematician's Apology

The Kummer 166 Configuration
as seen by Kantor in 1969— (pdf, 2.5 MB)

IMAGE-- 16_6 configuration from '2-Transitive Symmetric Designs,' by William M. Kantor (AMS Transactions, 1969)

For some background, see Configurations and Squares.

For some quite different geometry of the 4×4 square that  is
original with me, see a page with that title. (The geometry's
importance depends in part on its connection with the
Miracle Octad Generator (MOG) of R.T. Curtis. I of course
had nothing to do with the MOG's discovery, but I do  claim credit
for discovering some geometric properties of the 4×4 square
that constitutes two-thirds of the MOG as originally defined .)

Related material— The Schwartz Notes of June 1.

Powered by WordPress