Log24

Sunday, April 8, 2018

Design

Filed under: General,Geometry — m759 @ 11:00 pm

From a Log24 post of Feb. 5, 2009 —

Design Cube 2x2x2 for demonstrating Galois geometry

An online logo today —

See also Harry Potter and the Lightning Bolt.

 

Thursday, July 23, 2015

Design Cube

Filed under: General — m759 @ 8:24 pm

Broken Symmetries  in  Diamond Space —

Monday, August 6, 2018

The Girl with Kaleidoscope Eyes

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 pm

http://www.log24.com/log/pix18/180806-Lexicon-image-search.jpg

“All right, Jessshica. It’s time to open the boxsssschhh.”

“Gahh,” she said. She began to walk toward the box, but her heart failed her and she retreated back to the chair. “Fuck. Fuck.” Something mechanical purred. The seam she had found cracked open and the top of the box began to rise. She squeezed shut her eyes and groped her way into a corner, curling up against the concrete and plugging her ears with her fingers. That song she’d heard the busker playing on the train platform with Eliot, “Lucy in the Sky with Diamonds”; she used to sing that. Back in San Francisco, before she learned card tricks. It was how she’d met Benny: He played guitar. Lucy was the best earner, Benny said, so that was mainly what she sang. She must have sung it five times an hour, day after day. At first she liked it but then it was like an infection, and there was nothing she could do and nowhere she could go without it running across her brain or humming on her lips, and God knew she tried; she was smashing herself with sex and drugs but the song began to find its way even there. One day, Benny played the opening chord and she just couldn’t do it. She could not sing that fucking song. Not again. She broke down, because she was only fifteen, and Benny took her behind the mall and told her it would be okay. But she had to sing. It was the biggest earner. She kind of lost it and then so did Benny and that was the first time he hit her. She ran away for a while. But she came back to him, because she had nothing else, and it seemed okay. It seemed like they had a truce: She would not complain about her bruised face and he would not ask her to sing “Lucy.” She had been all right with this. She had thought that was a pretty good deal.

Now there was something coming out of a box, and she reached for the most virulent meme she knew. “Lucy in the sky!” she sang. “With diamonds!”

•   •   •

Barry, Max. Lexicon: A Novel  (pp. 247-248).
Penguin Publishing Group. Kindle Edition.

Related material from Log24 on All Hallows' Eve 2013

"Just another shake of the kaleidoscope" —

Related material:

Kaleidoscope Puzzle,  
Design Cube 2x2x2, and 
Through the Looking Glass: A Sort of Eternity.

Tuesday, March 27, 2018

Compare and Contrast

Filed under: General,Geometry — Tags: , , — m759 @ 4:28 pm

Weyl on symmetry, the eightfold cube, the Fano plane, and trigrams of the I Ching

Related material on automorphism groups —

The "Eightfold Cube" structure shown above with Weyl
competes rather directly with the "Eightfold Way" sculpture 
shown above with Bryant. The structure and the sculpture
each illustrate Klein's order-168 simple group.

Perhaps in part because of this competition, fans of the Mathematical
Sciences Research Institute (MSRI, pronounced "Misery') are less likely
to enjoy, and discuss, the eight-cube mathematical structure  above
than they are an eight-cube mechanical puzzle  like the one below.

Note also the earlier (2006) "Design Cube 2x2x2" webpage
illustrating graphic designs on the eightfold cube. This is visually,
if not mathematically, related to the (2010) "Expert's Cube."

Thursday, December 1, 2016

What’s in a Name

Filed under: General,Geometry — m759 @ 11:23 pm

Design Cube 2x2x2 for demonstrating Galois geometry

   Backstory Aug. 21, 2016, and Quora.com.

Sunday, August 21, 2016

Imperium Emporium

Filed under: General,Geometry — m759 @ 11:30 pm

Design Cube 2x2x2 for demonstrating Galois geometry

Harry Potter with lightning-bolt scar

Harry Potter, star of the new film
"Imperium," with lightning-bolt
scar on his forehead

Wednesday, April 1, 2015

Würfel-Märchen

Filed under: General,Geometry — Tags: , , , — m759 @ 7:59 pm

Continued from yesterday, the date of death for German
billionaire philanthropist Klaus Tschira —

For Tschira in this journal, see Stiftung .

For some Würfel  illustrations, see this morning's post
Manifest O.  A related webpage —

Saturday, July 12, 2014

Sequel

Filed under: General,Geometry — Tags: , , , , — m759 @ 9:00 am

A sequel to the 1974 film
Thunderbolt and Lightfoot :

Contingent and Fluky

Some variations on a thunderbolt  theme:

Design Cube 2x2x2 for demonstrating Galois geometry

These variations also exemplify the larger
Verbum  theme:

Image-- Escher's 'Verbum'

Escher’s Verbum

Image-- Solomon's Cube

Solomon’s Cube

A search today for Verbum  in this journal yielded
a Georgetown 
University Chomskyite, Professor
David W. Lightfoot.

"Dr. Lightfoot writes mainly on syntactic theory,
language acquisition and historical change, which
he views as intimately related. He argues that
internal language change is contingent and fluky,
takes place in a sequence of bursts, and is best
viewed as the cumulative effect of changes in
individual grammars, where a grammar is a
'language organ' represented in a person's
mind/brain and embodying his/her language
faculty."

Some syntactic work by another contingent and fluky author
is related to the visual patterns illustrated above.

See Tecumseh Fitch  in this journal.

For other material related to the large Verbum  cube,
see posts for the 18th birthday of Harry Potter.

That birthday was also the upload date for the following:

See esp. the comments section.

Thursday, October 31, 2013

Interpenetrative Ogdoad

Filed under: General,Geometry — m759 @ 2:21 pm

The title is from an essay by James C. Nohrnberg

(Click to enlarge.)

"Just another shake of the kaleidoscope" —

Related material:

Kaleidoscope Puzzle,  
Design Cube 2x2x2, and 
Through the Looking Glass: A Sort of Eternity.

Saturday, November 27, 2010

Simplex Sigillum Veri

Filed under: General,Geometry — Tags: — m759 @ 7:20 am

An Adamantine View of "The [Philosophers'] Stone"

The New York Times  column "The Stone" on Sunday, Nov. 21 had this—

"Wittgenstein was formally presenting his Tractatus Logico-Philosophicus , an already well-known work he had written in 1921, as his doctoral thesis. Russell and Moore were respectfully suggesting that they didn’t quite understand proposition 5.4541 when they were abruptly cut off by the irritable Wittgenstein. 'I don’t expect you to understand!' (I am relying on local legend here….)"

Proposition 5.4541*—

http://www.log24.com/log/pix10B/101127-WittgensteinSimplex.jpg

Related material, found during a further search—

A commentary on "simplex sigillum veri" leads to the phrase "adamantine crystalline structure of logic"—

http://www.log24.com/log/pix10B/101127-LukasiewiczAdamantine.jpg

For related metaphors, see The Diamond Cube, Design Cube 2x2x2, and A Simple Reflection Group of Order 168.

Here Łukasiewicz's phrase "the hardest of materials" apparently suggested the commentators' adjective "adamantine." The word "diamond" in the links above refers of course not to a material, but to a geometric form, the equiangular rhombus. For a connection of this sort of geometry with logic, see The Diamond Theorem and The Geometry of Logic.

For more about God, a Stone, logic, and cubes, see Tale  (Nov. 23).

* 5.4541 in the German original—

  Die Lösungen der logischen Probleme müssen einfach sein,
  denn sie setzen den Standard der Einfachheit.
  Die Menschen haben immer geahnt, dass es
  ein Gebiet von Fragen geben müsse, deren Antworten—
  a priori—symmetrisch, und zu einem abgeschlossenen,
  regelmäßigen Gebilde vereint liegen.
  Ein Gebiet, in dem der Satz gilt: simplex sigillum veri.

  Here "einfach" means "simple," not "neat," and "Gebiet" means
  "area, region, field, realm," not (except metaphorically) "sphere."

Monday, August 23, 2010

Diamond Puzzle Downloads

Filed under: General,Geometry — m759 @ 2:00 am

The Diamond 16 Puzzle and the Kaleidoscope Puzzle can now be downloaded in the normal way from a browser, with the save-as web-page-complete option, and have their JavaScript still work— if  the files are saved with the name indicated in the instructions on the puzzles' web pages. (There was a problem with file names in the JavaScript that has been fixed.)

The JavaScript pages Design Cube 2x2x2 and Design Cube 4x4x4 have not been changed. To download these, it is necessary to…

  1. Do a web-page-complete save to get an image-files folder, then
  2. do an HTML-only save to the image-files folder  to put an unaltered copy of the the web page there, then
  3. rename the image-files folder to unlink it from the altered HTML page downloaded in step 1, then
  4. delete the altered HTML page downloaded in step 1.

The result is a folder containing both image files and the HTML page, just as it is on the Web.

Thursday, February 5, 2009

Thursday February 5, 2009

Through the
Looking Glass:

A Sort of Eternity

From the new president’s inaugural address:

“… in the words of Scripture, the time has come to set aside childish things.”

The words of Scripture:

9 For we know in part, and we prophesy in part.
10 But when that which is perfect is come, then that which is in part shall be done away.
11 When I was a child, I spake as a child, I understood as a child, I thought as a child: but when I became a man, I put away childish things.
12 For now we see through a glass, darkly, but then face to face: now I know in part; but then shall I know even as also I am known. 

First Corinthians 13

“through a glass”

[di’ esoptrou].
By means of
a mirror [esoptron]
.

Childish things:

Froebel's third gift, the eightfold cube
© 2005 The Institute for Figuring
Photo by Norman Brosterman
fom the Inventing Kindergarten
exhibit at The Institute for Figuring
(co-founded by Margaret Wertheim)
 

Not-so-childish:

Three planes through
the center of a cube
that split it into
eight subcubes:
Cube subdivided into 8 subcubes by planes through the center
Through a glass, darkly:

A group of 8 transformations is
generated by affine reflections
in the above three planes.
Shown below is a pattern on
the faces of the 2x2x2 cube
that is symmetric under one of
these 8 transformations–
a 180-degree rotation:

Design Cube 2x2x2 for demonstrating Galois geometry

(Click on image
for further details.)

But then face to face:

A larger group of 1344,
rather than 8, transformations
of the 2x2x2 cube
is generated by a different
sort of affine reflections– not
in the infinite Euclidean 3-space
over the field of real numbers,
but rather in the finite Galois
3-space over the 2-element field.

Galois age fifteen, drawn by a classmate.

Galois age fifteen,
drawn by a classmate.

These transformations
in the Galois space with
finitely many points
produce a set of 168 patterns
like the one above.
For each such pattern,
at least one nontrivial
transformation in the group of 8
described above is a symmetry
in the Euclidean space with
infinitely many points.

For some generalizations,
see Galois Geometry.

Related material:

The central aim of Western religion– 

"Each of us has something to offer the Creator...
the bridging of
 masculine and feminine,
 life and death.
It's redemption.... nothing else matters."
-- Martha Cooley in The Archivist (1998)

The central aim of Western philosophy–

 Dualities of Pythagoras
 as reconstructed by Aristotle:
  Limited Unlimited
  Odd Even
  Male Female
  Light Dark
  Straight Curved
  ... and so on ....

“Of these dualities, the first is the most important; all the others may be seen as different aspects of this fundamental dichotomy. To establish a rational and consistent relationship between the limited [man, etc.] and the unlimited [the cosmos, etc.] is… the central aim of all Western philosophy.”

— Jamie James in The Music of the Spheres (1993)

“In the garden of Adding
live Even and Odd…
And the song of love’s recision
is the music of the spheres.”

— The Midrash Jazz Quartet in City of God, by E. L. Doctorow (2000)

A quotation today at art critic Carol Kino’s website, slightly expanded:

“Art inherited from the old religion
the power of consecrating things
and endowing them with
a sort of eternity;
museums are our temples,
and the objects displayed in them
are beyond history.”

— Octavio Paz,”Seeing and Using: Art and Craftsmanship,” in Convergences: Essays on Art and Literature (New York: Harcourt Brace Jovanovich 1987), 52

From Brian O’Doherty’s 1976 Artforum essays– not on museums, but rather on gallery space:

Inside the White Cube

“We have now reached
a point where we see
not the art but the space first….
An image comes to mind
of a white, ideal space
that, more than any single picture,
may be the archetypal image
of 20th-century art.”

http://www.log24.com/log/pix09/090205-cube2x2x2.gif

“Space: what you
damn well have to see.”

— James Joyce, Ulysses  

Monday, February 6, 2023

Interality Studies

Filed under: General — Tags: , — m759 @ 12:26 pm
 

You, Xi-lin; Zhang, Peter. "Interality in Heidegger." 
The Free Library , April 1, 2015.  
. . . .

The term "interology" is meant as an interventional alternative to traditional Western ontology. The idea is to help shift people's attention and preoccupation from subjects, objects, and entities to the interzones, intervals, voids, constitutive grounds, relational fields, interpellative assemblages, rhizomes, and nothingness that lie between, outside, or beyond the so-called subjects, objects, and entities; from being to nothing, interbeing, and becoming; from self-identicalness to relationality, chance encounters, and new possibilities of life; from "to be" to "and … and … and …" (to borrow Deleuze's language); from the actual to the virtual; and so on. As such, the term wills nothing short of a paradigm shift. Unlike other "logoi," which have their "objects of study," interology studies interality, which is a non-object, a no-thing that in-forms and constitutes the objects and things studied by other logoi.
. . . .

Some remarks from this  journal on April 1, 2015 —

Manifest O

Tags:  

— m759 @ 4:44 AM April 1, 2015

The title was suggested by
http://benmarcus.com/smallwork/manifesto/.

The "O" of the title stands for the octahedral  group.

See the following, from http://finitegeometry.org/sc/map.html —

83-06-21 An invariance of symmetry The diamond theorem on a 4x4x4 cube, and a sketch of the proof.
83-10-01 Portrait of O  A table of the octahedral group O using the 24 patterns from the 2×2 case of the diamond theorem.
83-10-16 Study of O  A different way of looking at the octahedral group, using cubes that illustrate the 2x2x2 case of the diamond theorem.
84-09-15 Diamonds and whirls Block designs of a different sort — graphic figures on cubes. See also the University of Exeter page on the octahedral group O.

The above site, finitegeometry.org/sc, illustrates how the symmetry
of various visual patterns is explained by what Zhang calls "interality."

Tuesday, March 28, 2017

Bit by Bit

Filed under: General,Geometry — Tags: , , , — m759 @ 11:45 am

From Log24, "Cube Bricks 1984" —

An Approach to Symmetric Generation of the Simple Group of Order 168

Also on March 9, 2017 —

For those who prefer graphic  art —

Broken Symmetries  in  Diamond Space  

Tuesday, February 21, 2017

Arrow Economics

Filed under: General — m759 @ 11:29 pm

Broken Symmetries  in  Diamond Space 

Saturday, January 7, 2017

Conceptualist Minimalism

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

"Clearly, there is a spirit of openhandedness in post-conceptual art
uses of the term 'Conceptualism.' We can now endow it with a
capital letter because it has grown in scale from its initial designation
of an avant-garde grouping, or various groups in various places, and
has evolved in two further phases. It became something like a movement,
on par with and evolving at the same time as Minimalism. Thus the sense
it has in a book such as Tony Godfrey’s Conceptual Art.  Beyond that,
it has in recent years spread to become a tendency, a resonance within
art practice that is nearly ubiquitous." — Terry Smith, 2011

See also the eightfold cube

The Eightfold Cube

 

Tuesday, June 14, 2016

Model Kit

Filed under: General,Geometry — Tags: — m759 @ 12:14 pm

The title refers to the previous post, which quotes a 
remark by a poetry critic in the current New Yorker .

Scholia —

From the post Structure and Sense of June 6, 2016 —

Structure

Sense

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

From the post Design Cube of July 23, 2015 —

Broken Symmetries  in  Diamond Space 

Wednesday, April 1, 2015

Manifest O

Filed under: General,Geometry — Tags: , , — m759 @ 4:44 am

The title was suggested by
http://benmarcus.com/smallwork/manifesto/.

The "O" of the title stands for the octahedral  group.

See the following, from http://finitegeometry.org/sc/map.html —

83-06-21 An invariance of symmetry The diamond theorem on a 4x4x4 cube, and a sketch of the proof.
83-10-01 Portrait of O  A table of the octahedral group O using the 24 patterns from the 2×2 case of the diamond theorem.
83-10-16 Study of O  A different way of looking at the octahedral group, using cubes that illustrate the 2x2x2 case of the diamond theorem.
84-09-15 Diamonds and whirls Block designs of a different sort — graphic figures on cubes. See also the University of Exeter page on the octahedral group O.

Tuesday, February 10, 2015

In Memoriam…

Filed under: General,Geometry — Tags: , — m759 @ 12:25 pm

industrial designer Kenji Ekuan —

Eightfold Design.

The adjective "eightfold," intrinsic to Buddhist
thought, was hijacked by Gell-Mann and later 
by the Mathematical Sciences Research Institute
(MSRI, pronounced "misery").  The adjective's
application to a 2x2x2 cube consisting of eight
subcubes, "the eightfold cube," is not intended to
have either Buddhist or Semitic overtones.  
It is pure mathematics.

Tuesday, October 21, 2014

Tools

Filed under: General,Geometry — Tags: — m759 @ 12:00 am

(Night at the Museum continues.)

"Strategies for making or acquiring tools

While the creation of new tools marked the route to developing the social sciences,
the question remained: how best to acquire or produce those tools?"

— Jamie Cohen-Cole, “Instituting the Science of Mind: Intellectual Economies
and Disciplinary Exchange at Harvard’s Center for Cognitive Studies,”
British Journal for the History of Science  vol. 40, no. 4 (2007): 567-597.

Obituary of a co-founder, in 1960, of the Center for Cognitive Studies at Harvard:

"Disciplinary Exchange" —

In exchange for the free Web tools of HTML and JavaScript,
some free tools for illustrating elementary Galois geometry —

The Kaleidoscope Puzzle,  The Diamond 16 Puzzle
The 2x2x2 Cube, and The 4x4x4 Cube

"Intellectual Economies" —

In exchange for a $10 per month subscription, an excellent
"Quilt Design Tool" —

This illustrates not geometry, but rather creative capitalism.

Related material from the date of the above Harvard death:  Art Wars.

Saturday, July 30, 2011

Groups and Symmetry

Filed under: General,Geometry — m759 @ 1:00 pm

"… the best way to understand a group is to
see it as the group of symmetries of something."

— John Baez, p. 239, Bulletin (New Series) of the
American Mathematical Society
, Vol. 42, No. 2,
April 2005, book review on pp. 229–243
electronically published on January 26, 2005

"Imagine yourself as a gem cutter,
turning around this diamond…."

Ibid ., p. 240

See also related material from Log24.

Tuesday, February 16, 2010

Mysteries of Faith

Filed under: General,Geometry — Tags: , — m759 @ 9:00 am

From today's NY Times

http://www.log24.com/log/pix10/100216-NYTobits.jpg

Obituaries for mystery authors
Ralph McInerny and Dick Francis

From the date (Jan. 29) of McInerny's death–

"…although a work of art 'is formed around something missing,' this 'void is its vanishing point, not its essence.'"

Harvard University Press on Persons and Things (Walpurgisnacht, 2008), by Barbara Johnson

From the date (Feb. 14) of Francis's death–

2x2x2 cube

The EIghtfold Cube

The "something missing" in the above figure is an eighth cube, hidden behind the others pictured.

This eighth cube is not, as Johnson would have it, a void and "vanishing point," but is instead the "still point" of T.S. Eliot. (See the epigraph to the chapter on automorphism groups in Parallelisms of Complete Designs, by Peter J. Cameron. See also related material in this journal.) The automorphism group here is of course the order-168 simple group of Felix Christian Klein.

For a connection to horses, see
a March 31, 2004, post
commemorating the birth of Descartes
  and the death of Coxeter–

Putting Descartes Before Dehors

     Binary coordinates for a 4x2 array  Chess knight formed by a Singer 7-cycle

For a more Protestant meditation,
see The Cross of Descartes

Descartes

Descartes's Cross

"I've been the front end of a horse
and the rear end. The front end is better."
— Old vaudeville joke

For further details, click on
the image below–

Quine and Derrida at Notre Dame Philosophical Reviews

Notre Dame Philosophical Reviews

Friday, December 19, 2008

Friday December 19, 2008

Filed under: General,Geometry — Tags: , , , , — m759 @ 1:06 pm
Inside the
White Cube

Part I: The White Cube

The Eightfold Cube

Part II: Inside
 
The Paradise of Childhood'-- Froebel's Third Gift

Part III: Outside

Mark Tansey, 'The Key' (1984)

Click to enlarge.

Mark Tansey, The Key (1984)

For remarks on religion
related to the above, see
Log24 on the Garden of Eden
and also Mark C. Taylor,
"What Derrida Really Meant"
(New York Times, Oct. 14, 2004).

For some background on Taylor,
see Wikipedia. Taylor, Chairman
of the Department of Religion
at
Columbia University, has a
1973 doctorate in religion from
Harvard University. His opinion
of Derrida indicates that his
sympathies lie more with
the serpent than with the angel
in the Tansey picture above.

For some remarks by Taylor on
the art of Tansey relevant to the
structure of the white cube
(Part I above), see Taylor's
The Picture in Question:
Mark Tansey and the
Ends of Representation

(U. of Chicago Press, 1999):

From Chapter 3,
"Sutures* of Structures," p. 58:

"What, then, is a frame, and what is frame work?

This question is deceptive in its simplicity. A frame is, of course, 'a basic skeletal structure designed to give shape or support' (American Heritage Dictionary)…. when the frame is in question, it is difficult to determine what is inside and what is outside. Rather than being on one side or the other, the frame is neither inside nor outside. Where, then, Derrida queries, 'does the frame take place….'"

* P. 61:
"… the frame forms the suture of structure. A suture is 'a seamless [sic**] joint or line of articulation,' which, while joining two surfaces, leaves the trace of their separation."

 ** A dictionary says "a seamlike joint or line of articulation," with no mention of "trace," a term from Derrida's jargon.

Thursday, March 9, 2006

Thursday March 9, 2006

Filed under: General,Geometry — Tags: , — m759 @ 2:56 pm

Finitegeometry.org Update

(Revised May 21, 2006)

Finitegeometry.org now has permutable JavaScript views of the 2x2x2 and 4x4x4 design cubes.  Solomon’s Cube presented a claim that the 4x4x4 design cube retains symmetry under a group of about 1.3 trillion transformations.  The JavaScript version at finitegeometry.org/sc/64/view/ lets the reader visually verify this claim.  The reader should first try the Diamond 16 Puzzle.  The simpler 2x2x2 design cube, with its 1,344 transformations, was described in Diamonds and Whirls; the permutable JavaScript version is at finitegeometry.org/sc/8/view/.

Wednesday, May 4, 2005

Wednesday May 4, 2005

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 pm
The Fano Plane
Revisualized:

 

 The Eightfold Cube

or, The Eightfold Cube

Here is the usual model of the seven points and seven lines (including the circle) of the smallest finite projective plane (the Fano plane):
 
The image “http://www.log24.com/theory/images/Fano.gif” cannot be displayed, because it contains errors.
 

Every permutation of the plane's points that preserves collinearity is a symmetry of the  plane.  The group of symmetries of the Fano plane is of order 168 and is isomorphic to the group  PSL(2,7) = PSL(3,2) = GL(3,2). (See Cameron on linear groups (pdf).)

The above model indicates with great clarity six symmetries of the plane– those it shares with the equilateral triangle.  It does not, however, indicate where the other 162 symmetries come from.  

Shown below is a new model of this same projective plane, using partitions of cubes to represent points:

 

Fano plane with cubes as points
 
The cubes' partitioning planes are added in binary (1+1=0) fashion.  Three partitioned cubes are collinear if and only if their partitioning planes' binary sum equals zero.

 

The second model is useful because it lets us generate naturally all 168 symmetries of the Fano plane by splitting a cube into a set of four parallel 1x1x2 slices in the three ways possible, then arbitrarily permuting the slices in each of the three sets of four. See examples below.

 

Fano plane group - generating permutations

For a proof that such permutations generate the 168 symmetries, see Binary Coordinate Systems.

 

(Note that this procedure, if regarded as acting on the set of eight individual subcubes of each cube in the diagram, actually generates a group of 168*8 = 1,344 permutations.  But the group's action on the diagram's seven partitions of the subcubes yields only 168 distinct results.  This illustrates the difference between affine and projective spaces over the binary field GF(2).  In a related 2x2x2 cubic model of the affine 3-space over GF(2) whose "points" are individual subcubes, the group of eight translations is generated by interchanges of parallel 2x2x1 cube-slices.  This is clearly a subgroup of the group generated by permuting 1x1x2 cube-slices.  Such translations in the affine 3-space have no effect on the projective plane, since they leave each of the plane model's seven partitions– the "points" of the plane– invariant.)

To view the cubes model in a wider context, see Galois Geometry, Block Designs, and Finite-Geometry Models.

 

For another application of the points-as-partitions technique, see Latin-Square Geometry: Orthogonal Latin Squares as Skew Lines.

For more on the plane's symmetry group in another guise, see John Baez on Klein's Quartic Curve and the online book The Eightfold Way.  For more on the mathematics of cubic models, see Solomon's Cube.

 

For a large downloadable folder with many other related web pages, see Notes on Finite Geometry.

Saturday, July 20, 2002

Saturday July 20, 2002

 

ABSTRACT: Finite projective geometry explains the surprising symmetry properties of some simple graphic designs– found, for instance, in quilts. Links are provided for applications to sporadic simple groups (via the "Miracle Octad Generator" of R. T. Curtis), to the connection between orthogonal Latin squares and projective spreads, and to symmetry of Walsh functions.

We regard the four-diamond figure D above as a 4×4 array of two-color diagonally-divided square tiles.

Let G be the group of 322,560 permutations of these 16 tiles generated by arbitrarily mixing random permutations of rows and of columns with random permutations of the four 2×2 quadrants.

THEOREM: Every G-image of D (as at right, below) has some ordinary or color-interchange symmetry.

Example:


For an animated version, click here.

Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. (See Jablan, Symmetry and Ornament, Ch. 2.6.) It is perhaps surprising that the patterns' interrelationships and symmetries can be explained fully only by using mathematics discovered just recently (relative to the patterns' age)– in particular, the theory of automorphism groups of finite geometries.

Using this theory, we can summarize the patterns' properties by saying that G is isomorphic to the affine group A on the linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2).

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets, and indicating the locations of these two-sets of tiles within the 4×4 patterns. The lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to zero– i.e., each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line diagrams correspond to the 35 three-point lines of the finite projective 3-space PG(3,2).

For example, here are the line diagrams for the figures above:

 
Shown below are the 15 possible line diagrams resulting from row/column/quadrant permutations. These 15 diagrams may, as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).


The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. (A proof shows that a 2nx2n two-color triangular half-squares pattern with such line diagrams must have a 2×2 center with a symmetry, and that this symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4×4 arrays of tiles, orthogonality (in the sense of Latin-square orthogonality) corresponds to skewness of lines in the finite projective space PG(3,2). This was stated by the author in a 1978 note. (The note apparently had little effect. A quarter-century later, P. Govaerts, D. Jungnickel, L. Storme, and J. A. Thas wrote that skew (i.e., nonintersecting) lines in a projective space seem "at first sight not at all related" to orthogonal Latin squares.)

We can define sums and products so that the G-images of D generate an ideal (1024 patterns characterized by all horizontal or vertical "cuts" being uninterrupted) of a ring of 4096 symmetric patterns. There is an infinite family of such "diamond" rings, isomorphic to rings of matrices over GF(4).

The proof uses a decomposition technique for functions into a finite field that might be of more general use.

The underlying geometry of the 4×4 patterns is closely related to the Miracle Octad Generator of R. T. Curtis– used in the construction of the Steiner system S(5,8,24)– and hence is also related to the Leech lattice, which, as Walter Feit has remarked, "is a blown up version of S(5,8,24)."

For a movable JavaScript version of these 4×4 patterns, see The Diamond 16 Puzzle.

The above is an expanded version of Abstract 79T-A37, "Symmetry invariance in a diamond ring," by Steven H. Cullinane, Notices of the American Mathematical Society, February 1979, pages A-193, 194.

For a discussion of other cases of the theorem, click here.

Related pages:

The Diamond 16 Puzzle

Diamond Theory in 1937:
A Brief Historical Note

Notes on Finite Geometry

Geometry of the 4×4 Square

Binary Coordinate Systems

The 35 Lines of PG(3,2)

Map Systems:
Function Decomposition over a Finite Field

The Diamond Theorem–
The 2×2, the 2x2x2, the 4×4, and the 4x4x4 Cases

Diamond Theory

Latin-Square Geometry

Walsh Functions

Inscapes

The Diamond Theory of Truth

Geometry of the I Ching

Solomon's Cube and The Eightfold Way

Crystal and Dragon in Diamond Theory

The Form, the Pattern

The Grid of Time

Block Designs

Finite Relativity

Theme and Variations

Models of Finite Geometries

Quilt Geometry

Pattern Groups

The Fano Plane Revisualized,
or the Eightfold Cube

The Miracle Octad Generator

Kaleidoscope

Visualizing GL(2,p)

Jung's Imago

Author's home page

AMS Mathematics Subject Classification:

20B25 (Group theory and generalizations :: Permutation groups :: Finite automorphism groups of algebraic, geometric, or combinatorial structures)

05B25 (Combinatorics :: Designs and configurations :: Finite geometries)

51E20 (Geometry :: Finite geometry and special incidence structures :: Combinatorial structures in finite projective spaces)



Creative Commons License
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
.

Page created Jan. 6, 2006, by Steven H. Cullinane      diamondtheorem.com

 

Initial Xanga entry.  Updated Nov. 18, 2006.

Powered by WordPress